
BIOFERTILIZER UNIT

Biofertilizer

Definition:

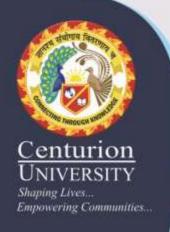
Biofertilizer is a substance which contains living microorganism which, when applied to seed, plant surfaces, or soil, colonizes the rhizosphere or the interior of the plant and promotes growth by increasing the supply or availability of primary nutrients to the host plant.

Objectives

- 1. To promote professional skills, entrepreneurship, knowledge and marketing skills through meaningful hands on experience and working in project mode.
- 2. To build confidence through end to end approach in product development.
- 3. To acquire enterprise management capabilities including skills for project development and execution, accountancy, national/international marketing, etc.

Outcomes

At the end of this course the student will be able to gain vivid idea regarding


1. Production procedure of different bioferilizers like Azotobacter, Azospirullum, Rhizobium, Phosphorus solubilizing bacteria, Phosphorus mobilizing bacteria.

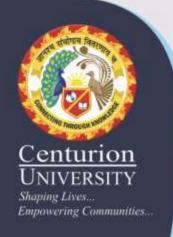
Types of Biofertilizer

Nitrogen (N2) fixing Biofertilizers		
Free-living	Azotobacter, Clostridium, Anabaena, Nostoc,	
Symbiotic	Rhizobium, Frankia, Anabaena azollae	
Associative Symbiotic	Azospirillum	

P Solubilizing Biofertilizers		
Bacteria	Bacillus megaterium var. phosphaticum	
	Bacillus circulans, Pseudomonas striata	
Fungi	Penicillium sp, Aspergillus awamori	

P Mobilizing Biofertilizers		
Arbuscular mycorrhiza	Glomus sp., Gigaspora sp., Acaulospora sp.,	
	Scutellospora sp. & Sclerocystis sp.	
Ectomycorrhiza	Laccaria sp., Pisolithus sp., Boletus sp., Amanita sp.	
Orchid mycorrhiza	Rhizoctonia solani	

Biofertilizers for Micro nutrients				
1	Silicate and Zinc solubilizers	Bacillus sp.		
Plant Growth Promoting Rhizobacteria				
1	Pseudomonas	Pseudomonas fluorescens		

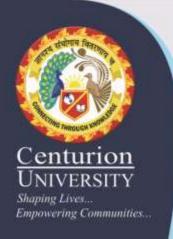

- 3. Method of Application
- a) Seed treatment, b) Seedling Root Dip and c)Soil Application

Existing facility

Instruments

- a. Autoclave (2)
- b. Hot Air Oven -(1)
- c. Binocular Microscope-(1)
- d. P^H Meter -(1)
- e. Distillation Unit (1)
- f. Incubator Orbital Shaker (1)
- g. Deep Freezer (-20°C)-1
- i. Laminar Air Flow (1)
- j. Digital Balance -(1)
- k. Refrigerator- (1)

Media Preparation Room


Inoculation & Growth room

Mixing & Packaging Room

Distillation unit

Procedure

Collection of soil sample from crop specific areas

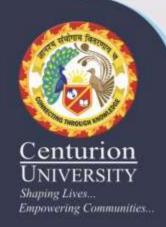
Serial dilution of fresh soil sample

Isolation of bacterial strain on specific recommended media

Morphological and biochemical characterization

Sub culturing to maintain strain viability

Incubation at 28.5°C for 4-5 days


Scaling up of production to 25lit

Mixing of broth culture with the carrier (charcoal)

Packaging and Storage

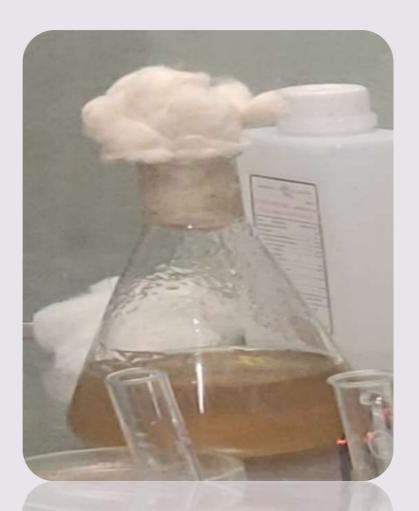
Collection of soil sample

Isolation of desired micro-organisms

Serial dilution

Centurion UNIVERSITY

Media preparation and sterilization


Media Chemicals Weighing

Glassware sterilization

Media for Azotobacter & Rhizobium

Jensen's media for Azotobacter

Yeast mannitol agar for Rhizobium

Empowering Comi

Sterilizing the media in Autoclave & Adjusting the pH

Sterilizing the media in Autoclave

Adjusting the pH

Empowering Communities..

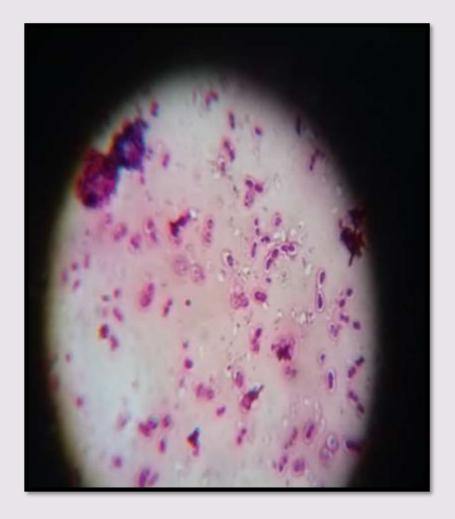
Inoculation and Incubation

OCULATION

INCUBATION



Incubation & Growth checking

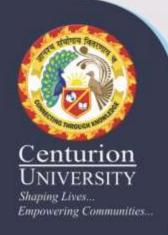

Incubation of different dilution

Growth checking

Confirmation test

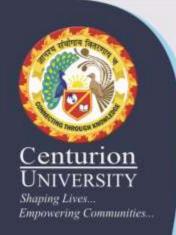
Gram staining

Gram negative confirmed(pink colour)

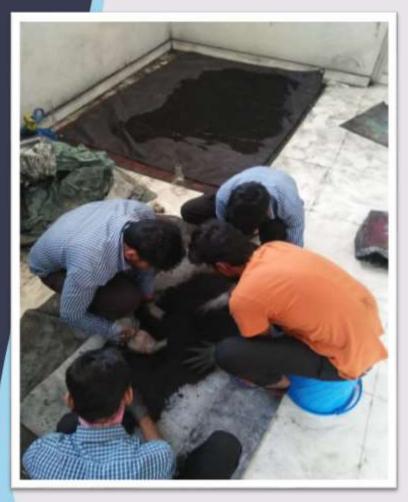


Production on large scale

 Production of Mother Culture and Scaling up the Production


Preparation of carrier material

Charcoal crushing


Sieving of charcoal

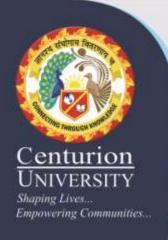
Mixing and packaging

Mixing

Biofertilizer Products

Product of Azotobacter

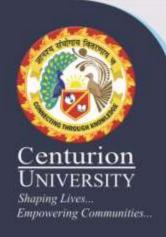
Product of Rhizobium



Product of liquid biofertilizer

Existing Product and Capacity

- 1. Product Name: Azotobacter and Rhizobium
- 2. Product Type: Liquid and Solid
- 3. Production Capacity: 75 kg/month



Future goal

1. Scaling Production: 1000kg/month

Requirement: Fermenter (100L capacity).

- 2. Research: Screening, Isolation, Identification and Field trials.
- 3. Organic Farming Domain Course: AELP Linked with Domain (Practices in units/Field/Lab/Project)
 - a. Project Based Learning.
 - b. Publication.
 - c. Marketing

THANK YOU