Appendix E

Statistical Power and Test Sensitivity
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Research reports in the literature are frequently flawed
by conclusions that state or imply that the null hypoth-
esis is true. For example, following the finding that the
difference between two sample means is not statisti-
cally significant, instead of properly concluding from
this failure to reject the null hypothesis that the data do
not warrant the conclusion that the population means
differ, the writer concludes, at least implicitly that there
is no difference. The latter conclusion is always strictly
invalid, and it is functionally invalid unless power is
high.

—1J. Cohen (1988)

The power of a statistical test is the probability that
if a true difference or effect exists, the difference or
effect will be detected. The power of a test becomes
important, especially in sensory evaluation, when a no-
difference decision has important implications, such as
the sensory equivalence of two formulas or products.
Concluding that two products are sensorially similar or
equivalent is meaningless unless the test has sufficient
power. Factors that affect test power include the sam-
ple size, alpha level, variability, and the chosen size of
a difference that must be detected. These factors are
discussed and worked examples given.

E.1 Introduction

Sensory evaluation requires experimental designs and
statistical procedures that are sensitive enough to find
differences. We need to know when treatments of
interest are having an effect. In food product devel-
opment, these treatments usually involve changes in
food constituents, the methods of processing, or types
of packaging. A purchasing department may change
suppliers of an ingredient. Product development may
test for the stability of a product during its shelf life.
In each of these cases, it is desirable to know when a
product has become perceivably different from some
comparison or control product, and sensory tests are
conducted.

In normal science, most statistical tests arc done to
insure that a true null hypothesis is not rejected with-
out cause. When enough evidence is gathered to show
that our data would be rare occurrences given the null
assumption, we conclude that a difference did occur.
This process keeps us from making the Type I error
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discussed in Appendix A. In practical terms, this keeps
a research program focused on real effects and insures
that business decisions about changes are made with
some confidence.

However, another kind of error in statistical decision
making is also important. This is the error associated
with accepting the null when a difference did occur.
Missing a true difference can be as dangerous as find-
ing a spurious one, especially in product research. In
order to provide tests of good sensitivity, then, the sen-
sory evaluation specialist conducts tests using good
design principles and sufficient numbers of judges and
replicates. The principles of good practice are dis-
cussed in Chapter 3. Most of these practices are aimed
at reducing unwanted error variance. Panel screening,
orientation, and training are some of the tools at the
disposal of the sensory specialist that can help mini-
mize unwanted variability. Another example is in the
use of reference standards, both for sensory terms and
for intensity levels in descriptive judgments.

Considering the general form of the t-test, we dis-
cover that two of the three variables in the statistical
formula are under some control of the sensory scientist.
Remember that the #-test takes this form:

t = difference between means/standard error

and the standard error is the sample standard deviation
divided by the square root of the sample size (N). The
denominator items can be controlled or at least influ-
enced by the sensory specialist. The standard deviation
or error variance can be minimized by good exper-
imental controls, panel training, and so on. Another
tool for reducing error is partitioning, for example in
the removal of panelist effects in the complete block
ANOVA (“repeated measures’’) designs or in the paired
t-test. As the denominator of a test statistic (like a F-
ratio or a f-value) becomes smaller, the value of the
test statistic becomes larger and it is easier to reject the
null. The probability of observing the results (under
the assumption of a true null) shrinks. The second fac-
tor under the control of the sensory professional is the
sample size. The sample size usually refers to the num-
ber of judges or observations. In some ANOVA models
additional degrees of freedom can also be gained by
replication.

It is sometimes necessary to base business decisions
on acceptance of the null hypothesis. Sometimes we
conclude that two products are sensorially similar, or

that they are a good enough match that no system-
atic difference is likely to be observed by regular users
of the product. In this scenario, it is critically impor-
tant that a sensitive and powerful test be conducted
so that a true difference is not missed, otherwise the
conclusion of “no difference” could be spurious. Such
decisions are common in statistical quality control,
ingredient substitution, cost reductions, other refor-
mulations, supplier changes, shelf life and packaging
studies, and a range of associated research questions.
The goal of such tests is to match an existing product
or provide a new process or cost reduction that does
not change or harm the sensory quality of the item. In
some cases, the goal may be to match a competitor’s
successful product. An equivalence conclusion may
also be important in advertising claims, as discussed
in Chapter 5.

In these practical scenarios, it is necessary to esti-
mate the power of the test, which is the probability
that a true difference would be detected. In statistical
terms, this is usually described in an inverse way, first
by defining the quantity beta as the long-term probabil-
ity of missing a true difference or the probability that
a Type II error is committed. Then one minus beta is
defined as the power of the test. Power depends upon
several interacting factors, namely the amount of error
variation, the sample size, and the size of the differ-
ence one wants to be sure to detect in the test. This
last item must be defined and set using the professional
judgment of the sensory specialist or by management.
In much applied research with existing food products,
there is a knowledge base to help decide how much a
change is important or meaningful.

This chapter will discuss the factors contributing to
test power and give some worked examples and prac-
tical scenarios where power is important in sensory
testing. Discussions of statistical power and worked
examples can also be found in Amerine et al. (1965),
Gacula and Singh (1984), and Gacula (1991, 1993).
Gacula’s writings include considerations of test power
in substantiating claims for sensory equivalence of
products. Examples specific to discrimination tests
can be found in Schlich (1993) and Ennis (1993).
General references on statistical power include the
classic text by Cohen (1988), his overview article writ-
ten for behavioral scientists (Cohen, 1992) and the
introductory statistics text by Welkowitz et al. (1982).
Equivalency testing is also discussed at length by
Wellek (2003), Bi (2006), and ASTM (2008). Let the
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reader note that many scientific bodies have rejected
the idea of using test power as justification for accept-
ing the null, and prefer an approach that proves that any
ditference lies within a specified or acceptable interval.
This idea is most applicable to proving the equivalence
of measured variables (like the bioequivalence of drug
delivery into the bloodstream). However, this equiva-
lence interval approach has also been taken for simple
sensory discrimination testing (see Ennis, 2008; Ennis
and Ennis, 2009).

E.2 Factors Affecting the Power
of Statistical Tests

E.2.1 Sample Size and Alpha Level

Mathematically, the power of a statistical test is a func-
tion of four interacting variables. Each of these entails
choices on the part of the experimenter. They may
seem arbitrary, but in the words of Cohen, “all conven-
tions are arbitrary. One can only demand of them that
they not be unreasonable” (1988, p. 12). Two choices
are made in the routine process of experimental design,
namely the sample size and the alpha level. The sam-
ple size is usually the number of judges in the sensory
test. This is commonly represented by the letter “N”
in statistical equations. In more complex designs like
multi-factor ANOVA, “N” can reflect both the num-
ber of judges and replications, or the total number of
degrees of freedom contributing to the error terms for
treatments that are being compared. Often this value is
strongly influenced by company traditions or lab “folk-
lore” about panel size. It may also be influenced by cost
considerations or the time needed to recruit, screen,
and/or train and test a sufficiently large number of par-
ticipants. However, this variable is the one most often
considered in determinations of test power, as it can
easily be modified in the experimental planning phase.

Many experimenters will choose the number of
panclists using considerations of desired test power.
Gacula (1993) gives the following example. For a mod-
erate to large consumer test, we might want to know
whether the products differ one half a point on the
9-point scale at most in their mean values. Suppose we
had prior knowledge that for this product, the standard
deviation is about 1 scale point (S = 1), we can find the

required number of people for an experiment with 5%
alpha and 10% beta (or 90% power). This is given by
the following relationship:

v Gt 282
(My — My)?

(1.96 + 1.65)*1> _
sy = 52 (E.1)

where M|—M,; is the minimal difference we must be
sure to detect and Z, and Zg are the Z-scores associated
with the desired Type I and Type Il error limits. In other
words, there are 52 observers required to insure that a
one-half point difference in means can be ruled out at
90% power when a non-significant result is obtained.
Note that for any fractional N, you must round up to
the next whole person.

The second variable affecting power is the alpha
level, or the choice of an upper limit on the probabil-
ity of rejecting a true null hypothesis (making a Type 1
error). Usually we set this value at the traditional level
of 0.05, but there are no hard and fast rules about this
magical number. In many cases in exploratory testing
or industrial practice, the concern over Type II error—
missing a true difference—are of sufficient concern
that the alpha level for reporting statistical signifi-
cance will float up to 0.10 or even higher. This strategy
shows us intuitively that there is a direct relationship
between the size of the alpha level and power, or in
other words, an inverse relationship between alpha-
risk and beta-risk. Consider the following outcome: we
allow alpha to float up to 0.10 or 0.20 (or even higher)
and still fail to find a significant p-value for our sta-
tistical test. Now we have an inflated risk of finding a
spurious difference, but an enhanced ability to reject
the null. If we still fail to reject the null, even at such
relaxed levels, then there probably is no true difference
among our products. This assumes no sloppy experi-
ment, good laboratory practices, and sufficient sample
size, i.e., meeting all the usual concerns about reason-
able methodology. The inverse relationship between
alpha and beta will be illustrated in a simple example
below.

Because of the fact that power increases as alpha is
allowed to rise, some researchers would be tempted to
raise alpha as a general way of guarding against Type
II error. However, there is a risk involved in this, and
that is the chance of finding false positives or spurious
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random differences. In any program of repeated test-
ing, the strategy of letting alpha float up as a cheap
way to increase test power should not be used. We
have seen cases in which suppliers of food ingredients
were asked to investigate quality control failures of
their ingredient submissions, only to find that the client
company had been doing discrimination tests with a
lax alpha level. This resulted in spurious rejections
of many batches that were probably within acceptable
limits.

E.2.2 Effect Size

The third factor in the determination of power concerns
the effect size one is testing against as an alternative
hypothesis. This is usually a stumbling block for sci-
entists who do not realize that they have already made
two important decisions in setting up the test—the
sample size and alpha level. However, this third deci-
sion seems much more subjective to most people. One
can think of this as the distance between the mean of a
control product and the mean of a test product under an
alternative hypothesis, in standard deviation units. For
example, let us assume that our control product has a
mean of 6.0 on some scale and the sample has a stan-
dard deviation of 2.0 scale units. We could test whether
the comparison product had a value of less than 4.0
or greater than 8.0, or one standard deviation from the
mean in a two-tailed test. In plain language, this is the
size of a difference that one wants to be sure to detect
in the experiment.

If the means of the treatments were two standard
deviations apart, most scientists would call this a rela-
tively strong effect, one that a good experiment would
not want to miss after the statistical test is conducted.
If the means were one standard deviation apart, this
is an effect size that is common in many experiments.
If the means were less than one half of one standard
deviation apart, that would a smaller effect, but one
that still might have important business implications.
Various authors have reviewed the effect sizes seen
in behavioral research and have come up with some
guidelines for small, medium, and large effect sizes
based on what is seen during the course of experimen-
tation with humans (Cohen, 1988; Welkowitz et al.,
1982).

Several problems arise. First, this idea of effect size
seems arbitrary and an experimenter may not have any
knowledge to aid in this decision. The sensory profes-
sional may simply not know how much of a consumer
impact a given difference in the data is likely to pro-
duce. It is much easier to “let the statistics make the
decision” by setting an alpha level according to tra-
dition and concluding that no significant difference
means that two products are sensorially equal. As
shown above, this is bad logic and poor experimen-
tal testing. Experienced sensory scientists may have
information at their disposal that makes this decision
less arbitrary. They may know the levels of variabil-
ity or the levels important to consumer rejection or
complaints. Trained panels will show standard devi-
ations around 10% of scale range (Lawless, 1988).
The value will be slightly higher for difficult sen-
sory attributes like aroma or odor intensity, and lower
for “easier” attributes like visual and some textural
attributes. Consumers, on the other hand will have
intensity attributes with variation in the realm of 25%
of scale range and sometimes even higher values for
hedonics (acceptability). Another problem with effect
size is that clients or managers are often unaware of it
and do not understand why some apparently arbitrary
decision has to enter into scientific experimentation.

The “sensitivity” of a test to differences involves
both power and the overall quality of the test.
Sensitivity entails low error, high power, sufficient
sample size, good testing conditions, good design, and
so on The term “power” refers to the formal statistical
concept describing the probability of accepting a true
alternative hypothesis (e.g. finding a true difference).
In a parallel fashion, Cohen (1988) drew an important
distinction between effect size and “operative effect
size” and showed how a good design can increase
the effective sensitivity of an experiment. He used the
example of a paired z-test as opposed to an independent
groups f-test. In the paired design subjects function as
their own controls since they evaluate both products.
The between-person variation is “partitioned” out of
the picture by the computation of difference scores.
This effectively takes judge variation out of the picture.

In mathematical terms, this effect size can be stated
for the #-test as the number of standard deviations sep-
arating means, usually signified by the letter “d”. In
the case of choice data, the common estimate is our
old friend d' (d-prime) from signal detection theory,
sometimes signified as a population estimate by the
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Greek letter delta (Ennis, 1993). For analyses based
on correlation, the simple Pearson’s r is a common
and direct measure of association. Various measures of
effect size (such as variance accounted for by a fac-
tor) in ANOVAs have been used. Further discussion of
effect sizes and how to measure them can be found in
Cohen (1988) and Welkowitz et al. (1982).

E.2.3 How Alpha, Beta, Effect Size, and N
Interact

Diagrams below illustrate how effect size, alpha, and
beta interact. As an example, we perform a test with
a rating scale, e.g., a just-about-right scale, and we
want to test whether the mean rating for the product is
higher than the midpoint of the scale. This is the sim-
ple r-test against a fixed value, and our hypothesis is
one tailed. For the simple one-tailed #-test, alpha repre-
sents the area under the 7-distribution to the right of the
cutoff determined by the limiting p-value (usually 5%).
It also represents the upper tail of the sampling distri-
bution of the mean as shown in Fig. E.1. The value of
beta is shown by the area underneath the alternative

hypothesis curve to the left of the cutoff as shaded in
Fig. E.1. We have shown the sampling distribution for
the mean value under the null as the bell-shaped curve
on the left. The dashed line indicates the cutoff value
for the upper 5% of the tail of this distribution. This
would be the common value set for statistical signifi-
cance, so that for a give sample size (), the t-value at
the cutoff would keep us from making a Type I error
more than 5% of the time (when the null is true). The
right-hand curve represents the sampling distribution
for the mean under a chosen alternative hypothesis. We
know the mean from our choice of effect size (or how
much of a difference we have decided is important) and
we can base the variance on our estimate from the sam-
ple standard error. When we choose the value for mean
score for our test product, the d-value becomes deter-
mined by the difference of this mean from the control,
divided by the standard deviation. Useful examples
are drawn in Gacula’s (1991, 1993) discussion and in
the section on hypothesis testing in Sokal and Rohlf
(1981).

In this diagram, we can see how the three interacting
variables work to determine the size of the shaded area
for beta-risk. As the cutoff is changed by changing the
alpha level, the shaded area would become larger or

cutoff determined by chosen alpha level

Region of acceptance (of null)

sampling distribution of
mean under a
true null

1o

beta risk associated with area under
alternative hyothesis curve below cutoff

Fig. E.1 Power shown as the tail of the alternative hypothesis,
relative to the cutoff determined by the null hypothesis distribu-
tion. The diagram is most easily interpreted as a one-tailed r-test.
A test against a fixed value of a mean would be done against
a population value or a chosen scale point such the midpoint
of a just-right scale. The value of the mean for the alternative

sampling distribution

of mean under a fixed
alternative hypothesis
based on “d”

ua

alpha risk associated with
area under null curve above
cutoff, e.g. 5%

hypothesis can be based on research, prior knowledge, or the
effect size, d, the difference between the means under the
null and alternative hypotheses, expressed in standard deviation
units. Beta is given by the shaded area underneath the sam-
pling distribution for the alternative hypothesis, below the cutoff
determined by alpha. Power is one minus beta.
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Effect of increasing alpha level
to decrease beta risk

New cutoff
from increased
alpha level

Region of acceptance (of null)

original cutoff
determined by
alpha level

Region of rejection (of null)

beta risk reduced
by change in alpha

alpha risk increased

Fig. E.2 Increasing the alpha level decreases the area associated with beta, improving power (all other variables held equal).

smaller (see Fig. E.2). As the alpha-risk is increased,
the beta-risk is decreased, all other factors being held
constant. This is shown by shifting the critical value for
a significant z-statistic to the left, increasing the alpha
“area,” and decreasing the area associated with beta.

A second influence comes from changing the effect
size or alternative hypothesis. If we test against a larger
d-value, the distributions would be separated, and the
area of overlap is decreased. Beta-risk decreases when
we choose a bigger effect size for the alternative
hypothesis (see Fig. E.3). Conversely, testing for a
small difference in the alternative hypothesis would
pull the two distributions closer together, and if alpha
is maintained at 5%, the beta-risk associated with the
shaded area would have to get larger. The chances of
missing a true difference are very high if the alternative
hypothesis states that the difference is very small. It is
easier to detect a bigger difference than a smaller one,
all other things in the experiment being equal.

The third effect comes from changing the sam-
ple size or the number of observations. The effect of
increasing “N” is to shrink the effective standard devia-
tion of the sampling distributions, decreasing the stan-
dard error of the mean. This makes the distributions

taller and thinner so there is less overlap and less arca
associated with beta. The #-value for the cutoff moves
to the left in absolute terms.

In summary, we have four interacting variables and
knowing any three, we can determine the fourth. These
are alpha, beta, “N,” and effect size. If we wish to spec-
ify the power of the test up front, we have to make
at least two other decisions and then the remaining
parameter will be determined for us. For example, if
we want 80% test power (beta = 0.20), and alpha equal
to 0.05, and we can test only 50 subjects, then the
effect size we are able to detect at this level of power
is fixed. If we desire 80% test power, want to detect
0.5 standard deviations of difference, and set alpha at
0.05, then we can calculate the number of panelists
that must be tested (i.e., “N” has been determined by
the specification of the other three variables). In many
cases, experiments are conducted only with initial con-
cern for alpha and sample size. In that case there is
a monotonic relationship between the other two vari-
ables that can be viewed after the experiment to tell us
what power can be expected for different effect sizes.
These relationships are illustrated below. Various free-
ware programs are available for estimating power and
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Effect of increasing alternative
hypothesis effect size (“d”)
to decrease beta risk

Region of acceptance (of null)

<

“d” - increased

Region of rejection (of null)

»

<«

>

beta risk reduced
by increase in effect
size to be detected

o

alpha risk maintained at 5%

Fig. E.3 Increasing the effect size that must be detected increases the power, reducing beta. Larger effects (larger d, difference
between the means of the alternative and null hypotheses) are easier to detect.

sample size (e.g., Erdfelder et al., 1996). Tables for the
power of various statistical tests can also be found in
Cohen (1988). The R library “pwr” package specif-
ically implements power analyses outlined in Cohen
(1988).

E.3 Worked Examples

E.3.1 The t-Test

For a specific illustration, let us examine the indepen-
dent groups r-test to look at the relationship between
alpha, beta, effect size, and “N.” In this situation, we
want to compare two means generated from indepen-
dent groups, and the alternative hypothesis predicts
that the means are not equal (i.e., no direction is pre-
dicted). Figure E.4 shows the power of the two-tailed
independent groups f-test as a function of different
sample sizes (N) and different alternative hypothesis
effect sizes (d). (Note that N here refers to the total
sample, not N for each group. For very different sam-
ple sizes per group, further calculations must be done.)
If we set the lower limit of acceptable power at 50%,

we can see from these curves that using 200 panelists
would allow us to detect a small difference of about
0.3 standard deviations. With 100 subjects this differ-
ence must be about 0.4 standard deviations, and for
small sensory tests of 50 or 20 panelists (25 or 10
per group, respectively) we can only detect differences
of about 0.6 or 0.95 standard deviations, respectively,
with 50/50 chance of missing a true difference. This
indicates the liabilities in using a small sensory test to
justify a “parity” decision about products.

Often, a sensory scientist wants to know the
required sample size for a test, so they can recruit the
appropriate number of consumers or panelists for a
study. Figure E.5 shows the sample size required for
different experiments for a between-groups 7-test and
a decision that is two tailed. An example of such a
design would be a consumer test for product accept-
ability, with scaled data and each of the products
placed with a different consumer group (a so-called
monadic design). Note that the scale is log trans-
formed, since the group size becomes very large if we
are looking for small effects. For a very small effect
of only 0.2 standard deviations, we need 388 con-
sumers to have a minimal power level of 0.5. If we
want to increase power to 90%, the number exceeds
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Fig. E.4 Power of the 1.00
two-tailed independent groups
t-test as a function of different 0.90
sample sizes (V) and different
alternative hypothesis effect 0.80
sizes (d); the decision is
two-tailed at alpha = 0.05. 0.70
The effect size “d” represents
the difference between the 5 0601
means in standard deviations. b7}
Computed from the f 0.50
GPOWER program of g
Erdfelder et al. (1996). g 0.40
< 0.30 —{1—
0.20 ——
—O—
0.10
—n
o-oo 1 T 1 1 Ll 1 1 T 1
005 015 025 035 045 055 065 075 085 0.95
Effect size “d”
Fig. E.5 Number of judges 3.50
required for independent —[J— d=0.80
groups f-test at different levels
of power; the decision is two
tailed at alpha = 0.05. Note 3.00
that the sample size is plotted ®
on a log scale. Computed g
from the GPOWER program o
of Erdfelder et al. (1996). s 2501
:
©
S 2.00-
=)
S
1.50
T 1 T 1

1,000. On the other hand, for a big difference of 0.8
standard deviations (about 1 scale point on the 9-point
hedonic scale) we only need 28 consumers for 50%
power and 68 consumers for 90% power. This illus-
trates why some sensory tests done for research and
product development purposes are smaller than the cor-
responding marketing rescarch tests. Market research
tests may be aimed at finding small advantages in a
mature or optimized product system, and this requires
a test of high power to keep both alpha- and beta-risks
low.

0.5 .95

Power (1-beta)

E.3.2 An Equivalence Issue with Scaled
Data

Gacula (1991, 1993) gives examples of calculations of
test power using several scenarios devoted to substanti-
ating claims of product equivalence. These are mostly
based on larger scale consumer tests, where the sam-
ple size justifies the use of the normal distribution (Z)
rather than the small sample #-test. In such an experi-
ment, the calculation of power is straightforward, once
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the mean difference associated with the alternative
hypothesis is stated. The calculation for power follows
this relationship:

Power:l—ﬁ:l—fb[ (E2)

Xe — MDi|
SE
where X, represents the cutoff value for a significantly
higher mean score, determined by the alpha level. For
a one-tailed test, the cutoff is equal to the mean plus
1.645 times the standard error (or 1.96 standard errors
for a two-tailed situation). The Greek letter ® repre-
sents the value of the cumulative normal distribution;
in other words we are converting the Z-score to a
proportion or probability value. Since many tables of
the cumulative normal distribution are given in the
larger proportion, rather than the tail (as is true in
Gacula’s tables), it is sometimes necessary to subtract
the tabled value from 1 to get the other tail. The param-
eter up represents the mean difference as determined
by the alternative hypothesis. This equation simply
finds the area underneath the alternative hypothesis
Z-distribution, beyond the cutoff value X.. A diagram

of this is shown below.

Here is a scenario similar to one from Gacula
(1991). A consumer group of 92 panclists evaluates
two products and gives them mean scores of 5.9 and
6.1 on a 9-point hedonic scale. This is not a significant
difference, and the sensory professional is tempted
to conclude that the products are equivalent. Is this
conclusion justified?

The standard deviation for this study was 1.1, giv-
ing a standard error of 0.11. The cutoff values for the
95% confidence interval are then 1.96 standard errors,
or the mean plus or minus 0.22. We see that the two
means lie within the 95% confidence interval so the
statistical conclusion of no difference seems to be jus-
tified. A two-tailed test is used to see whether the new
product is higher than the standard product receiving
a 5.9. The two-tailed test requires a cutoff that is 1.96
standard errors above, or 0.22 units above the mean.
This sets our upper cutoff value for X, at 5.9 + 0.22 or
6.12. Once this boundary has been determined, it can
be used to split the distributions expected on the basis
of the alternative hypotheses into two sections. This is
shown in Fig. E.6. The section of the distribution that is
higher than this cutoff represents the detection of a dif-
ference or power (null rejected) while the section that

is lower represents the chance of missing the difference
or beta (null accepted).

In this example, Gacula originally used the actual
mean difference of 0.20 as the alternative hypothesis.
This would place the alternative hypothesis mean at
59+0.2 or 6.1. To estimate beta, we need to know
the arca in the tail of the alternative hypothesis distri-
bution to the left of the cutoff. This can be found once
we know the distance of the cutoff from out alternative
mean of 6.1. In this example, there is a small differ-
ence from the cutoff of only 6.1-6.12 or 0.02 units
on the original scale, or 0.02 divided by the standard
error to give about 0.2 Z-score units from the mean of
the alternative to the cutoff. Essentially, this mean lies
very near to the cutoff and we have split the alterna-
tive sampling distribution about in half. The area in the
tail associated with beta is large, about 0.57, so power
is about 43% (1 minus beta). Thus the conclusion of
no difference is not strongly supported by the power
under the assumptions that the true mean lies so close
to 5.9. However, we have tested against a small differ-
ence as the basis for our alternative hypothesis. There
is still a good chance that such a small difference docs
exist.

Suppose we relax the alternative hypothesis. Let
us presume that we determined before the experiment
that a difference of one-half of one standard devia-
tion on our scale is the lower limit for any practical
importance. We could then set the mean for the alter-
native hypothesis at 5.9 plus one half of the standard
deviation (1.1/2 or 0.55). The mean for the alterna-
tive now becomes 5.9 + 0.55 or 6.45. Our cutoff is
now 6.12-6.45 units away (0.33) or 0.33 divided by
the standard error of 0.11 to convert to Z-score units,
giving a value of 3. This has effectively shifted the
expected distribution to the right while our decision
cutoff remains the same at 6.12. The area in the tail
associated with beta would now be less than 1% and
power would be about 99%. The choice of an alter-
native hypothesis can greatly affect the confidence of
our decisions. If the business decision justifies a choice
of one half of a scale unit as a practical cutoff (based
on one-half of one standard deviation) then we can
see that our difference of only 0.2 units between mean
scores is fairly “safe” when concluding no difference.
The power calculations tell us exactly how safe this
would be. There is only a very small chance of see-
ing this result or one more extreme, if our true mean
score was 0.55 units higher. The observed events are
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Fig. E.6 Power first depends
upon setting a cutoft value
based upon the sample mean,
standard error, and the alpha
level. In the example shown,
this value is 6.12. The cutoff
value can then be used to
determine power and beta-risk
for various expected
distributions of means under
alternative hypotheses. In
Gacula’s first example, the
actual second product mean of

Region of acceptance (of null)

Cutoff for decision determined by alpha
level =6.12

If product scores higher than 6.12,

|
| Region of rejection (of null)
|
1 reject the null.

6.12

alpha risk at 5%

6.1 was used. The power
calculation gives only 43%,
which does not provide a
great deal of confidence in a
conclusion about product
equivalence. The lower
example shows the power for
testing against an alternative beta = .57
hypothesis that states that the (null accepted under true alternative)
true mean is 6.45 or higher.
Our sample and experiment
would detect this larger
difference with greater power.

5.9

Sampling distribution of the
mean under the true null.

Alternative hypothesis sampling distribution
based on actual mean obtain for comparison product
= 6.1 or 0.2 units of difference.

Power = 43%
(null rejected under true alternative)

beta = .01

(null accepted under true alternative)

Alternative hypothesis relaxed to test against a true comparison
product mean of 6.45 or larger.

Power = 99%
(null rejected under true alternative)

fairly unlikely given this alternative, so we reject the
alternative in favor of the null.

E.3.3 Sample Size for a Difference Test

Amerine ct al. (1965) gave a useful general formula for
computing the necessary numbers of judges in a dis-
crimination test, based on beta-risk, alpha-risk, and the
critical difference that must be detected. This last item
is conceived of as the difference between the chance
probability, p, and the probability associated with an
alternative hypothesis, p,. Different models for this are
discussed in Chapter 5 [see also Schlich (1993) and
Ennis (1993)]. For the sake of example, we will take

6.45

the chance-adjusted probability for 50% correct, which
is halfway between the chance probability and 100%
detection (i.e., 66.7% for the triangle test).

N — [Zowpo(l — Po) + Zp/Pa(l — pa)

2
:| (E.3)
|Po — Pal

for a one-tailed test (at a = 0.05), Z, = 1.645, and if
beta is kept to 10% (90% power) then Zg = 1.28. The
critical difference, po—p,, has a strong influence on the
equation. In the case where it is set to 33.3% for the
triangle test (a threshold of sorts) we then require 18
respondents as shown in the following calculation:

Vo 1.645/0.333(.667) + 1.28./0.667(0.333)
- 10.333 — 0.667|

2
] =17.03



Appendix E

545

So you would need a panel of about 18 persons to
protect against missing a difference this big and limit
your risk to 10%. Note that this is a fairly gross test,
as the difference we are trying to detect is large. If
half of a consumer population notices a difference, the
product could be in trouble.

Now, suppose we do not wish to be this lenient, but
prefer a test that will be sure to catch a difference about
half this big at the 95% power level instead of 90%.
Let us change one variable at a time to see which has
a bigger effect. First the beta-risk goes from 90 to 95%
and if we remain one tailed, Z now equals 1.645. So
the numbers become

N 1.645,/0.333(0.667) + 1.645/0.667(0.333)
- 10.333 — 0.667|

2
:| =21.55
So with the increase only in power, we need
four additional people for our panel. However, if we
decrease the effect size we want to detect by half the
numbers become

2
N |:1.645J0.333(0.667) + 1.28J0.667(0.333)] 6814
10.167]
Now the required panel size has quadrupled. The
combined effect of changing both beta and testing for
a smaller effect is

y — [ 1:645/033300.667) + 1.645,/0.667(0.333)
- 0.167]

2
:| = 86.20
Note that in this example, the effect of halving the
effect size (critical difference) was greater than the
effect of halving the beta-risk. Choosing a reasonable
alternative hypothesis is a decision that deserves some
care. If the goal is to insure that almost no person will
see a difference, or only a small proportion of con-
sumers (or only a small proportion of the time) a large
test may be necessary to have confidence in a “no-
difference” conclusion. A panel size of 87 testers is
probably a larger panel size than many people would
consider for a triangle test. Yet it is not unreasonable
to have this extra size in the panel when the research
question and important consequences concern a parity
or equivalence decision. Similar “large” sample sizes
can be found in the test for similarity as outlined by
Meilgaard et al. (1991).

E.4 Power in Simple Difference
and Preference Tests

The scenarios in which we test for the existence of
a difference or the existence of a preference often
involve important conclusions when no significant
effect is found. These are testing situations where
acceptance of the null and therefore establishing the
power of the test are of great importance. Perhaps for
this reason, power and beta-risk in these situations have
been addressed by several theorists. The difference
testing approaches of Schlich and Ennis are discussed
below and a general approach to statistical power is
shown in the introductory text by Welkowitz et al.
(1982).

Schlich (1993) published risk tables for discrim-
ination tests and offered a SAS routine to calculate
beta-risk based on exact binomial probabilities. His
article also contains tables of alpha-risk and beta-risk
for small discrimination tests and minimum numbers
of testers, and correct responses associated with dif-
ferent levels of alpha and beta. Separate tables are
computed for the triangle test and for the duo-trio
test. The duo—trio table is also used for the direc-
tional paired comparison as the tests are both one tailed
with chance probability of one-half. The tables show-
ing minimum numbers of testers and correct responses
for different levels of beta and alpha in the triangle test
are abridged and shown for the triangle test and for the
duo-trio test as Tables N1 and N2.

The effect size parameter is stated as the chance-
adjusted percent correct. This is based on Abbott’s
formula, where the chance adjusted proportion, pg,. is
based on the difference between the alternative hypoth-
esis percent correct, p,, and the chance percent correct,
Do, by the following formula:

Pd = (E.4)

I —po

This is the so-called discriminator or guessing
model discussed in Chapter 5. Schlich suggests the
following guidelines for effect size, that 50% above
chance is a large effect (50% discriminators), 37.5%
above chance is a medium effect, and 25% above
chance is a small effect.

Schlich also gave some examples of useful scenar-
ios in which the interplay of alpha and effect size are
driven by competing business interests. For example,
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manufacturing might wish to make a cost reduction
by changing an ingredient, but if a spurious difference
is found they will not recommend the switch and will
not save any money. Therefore the manufacturing deci-
sion is to keep alpha low. A marketing manager, on
the other hand, might want to insure that very few if
any consumers can see a difference. Thus they wish
to test against a small effect size, or be sure to detect
even a small number of discriminators. Keeping the
test power higher (beta low) under both of these condi-
tions will drive the required sample size (N) to a very
high level, perhaps hundreds of subjects, as seen in the
examples below.

Schlich’s tables provide a crossover point for a sit-
uation in which both alpha and beta will be low given
a sufficient number of testers and a certain effect size.
If fewer than the tabulated number (“x”) answer cor-
rectly, the chance of Type I error will increase should
you decide that there is a difference, but the chance of
Type II error will decrease should you decide that there
is no difference. Conversely, if the number of correct
judges exceeds that in the table, the chance of finding a
spurious difference will decrease should you reject the
null, but the chance of missing a true difference will
increase if you accept the null. So it is possible to use
these minimal values for a decision rule. Specifically,
if the number is less than x, accept the null and there
will be lower beta-risk than that listed in the column
heading. If the number correct is greater than X, reject
the null and alpha-risk will be lower than that listed. It
is also possible to interpolate to find other values using
various routines that can be found on the web.

Another set of tabulations for power in discrimina-
tion tests has been given by Ennis (1993). Instead of
basing the alternative hypothesis on the proportions of
discriminators, he has computed a measure of sensory
difference or effect size based on Thurstonian mod-
eling. These models take into account the fact that
different tests may have the same chance probability
level, but some discrimination methods are more diffi-
cult than others. The concept of “more difficult” shows
up in the signal detection models as higher variabil-
ity in the perceptual comparisons. The more difficult
test requires a bigger sensory difference to obtain the
same number of correct judges. The triangle test is
more difficult than the three-alternative forced-choice
test (3-AFC). In the 3-AFC, the panelist’s attention
is usually directed to a specific attribute rather than
choosing on the odd sample. However, the chance

percent correct for both triangle and 3-AFC test is 1/3.
The correction for guessing, being based on the chance
level, does not take into account the difficulty of the
triangle procedure. The “difficulty” arises due to the
inherent variability in judging three pairs of differences
as opposed to judging simply how strong or weak a
given attribute is.

Thurstonian or signal detection models (see
Chapter 5) are an improvement over the “proportion
of discriminators” model since they do account for
the difference in inherent variability. Ennis’s tables use
the Thurstonian sensory differences symbolized by the
lower case Greek letter delta, §. Delta represents the
sensory difference in standard deviations. The standard
deviations are theoretical variability estimates of the
sensory impressions created by the different products.
The delta values have the advantage that they are com-
parable across methods, unlike the percent correct or
the chance-adjusted percent correct. Table E.1 shows
the numbers of judges required for different levels of
power (80, 90%) and different delta values in the duo—
trio, triangle, 2AFC (paired comparison), and 3AFC
tests. The lower numbers of judges required for the
2AFC and 3AFC tests arise from their higher sensitiv-
ity to differences, i.e., lower inherent variability under
the Thurstonian models.

In terms of delta values, we can see that the usual
discrimination tests done with 25 or 50 panelists will

Table E.1 Numbers of judges required for different levels of
power and sensory difference for paired comparison (2-AFC),
duo-—trio, 3-AFC, and triangle tests with alpha = 0.05

3 2-AFC Duo-trio 3-AFC Triangle
80% power

0.50 78 3092 64 2742
0.75 35 652 27 576
1.00 20 225 15 197
1.25 13 102 9 88
1.50 9 55 6 47
1.75 7 34 5 28
2.00 6 23 3 19
90% power

0.50 108 4283 89 3810
0.75 48 902 39 802
1.00 27 310 21 276
1.25 18 141 13 124
1.50 12 76 9 66
1.75 9 46 6 40
2.00 7 31 5 26

Abstracted from Ennis (1993)
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only detect gross differences (§ >1.5) if the triangle
or duo—trio procedures are used. This fact offers some
warning that the “non-specific” tests for overall differ-
ence (triangle, duo—trio) are really only gross tools that
are better suited to giving confidence when a differ-
ence is detected. The AFC tests, on the other hand, like
a paired comparison test where the attribute of differ-
ence is specified (e.g., “pick which one is sweeter”) are
safer when a no-difference decision is the result.

Useful tables for the power of a triangle test can
be found in Chambers and Wolf (1996). A more gen-
erally useful table for various simple tests was given
by Welkowitz et al. (1982) where the effect size and
sample size are considered jointly to produce a power
table as a function of alpha. This produces a value we
will tabulate as the capital Greek letter delta (A, to dis-
tinguish it from the lowercase delta in Ennis’s tables),
while the raw effect size is given by the letter “d.” A
can be thought of as the d-value corrected for sam-
ple size. The A and d-values take the forms shown
in Table E.2 for simple statistical tests. Computing
these delta values, which take into account the sam-
ple size, allows the referencing of power questions to
one simple table, (Table E.3). In other words, all of
these simple tests have power calculations via the same
table.

Here is worked example, using a two-tailed test
on proportions (Welkowitz et al., 1982). Suppose a
marketing researcher thinks that a product improve-
ment will produce a preference difference of about 8%
against the standard product. In other words, he expects
that in a preference test, the split among consumers of
this product would be something like 46% preferring
the standard product and 54% preferring the new prod-
uct. He conducts a preference test with 400 people,
considered by “intuition” to be a hefty sample size and
finds no difference. What is the power of the test and
what is the certainty that he did miss a true difference
of that size?

Table E.2 Conversion of effect size (d) to delta (A) value,
considering sample size

Test
One-sample r-test

d-value A

A:d«/ﬁ

d = (p1—p2)lo

Dependent r-test d = (pui—p2)lo A =dN
Independent #-test d=(u1—p2)lo A=d ,%,—f’%,%
Correlation r A=dN -1
Proportions —Lo—Pa_ A = d«/N

VPo(1=po)

Table E.3 Effect size adjusted for sample size to show power
as a function of alpha

Two-tailed alpha 0.05 0.025 0.01 0.005
One-tailed alpha 0.10 0.05 0.02 0.01
A Power

0.2 0.11 0.05 0.02 0.01
0.4 0.13 0.07 0.03 0.01
0.6 0.16 0.09 0.03 0.01
0.8 0.21 0.13 0.06 0.04
1.0 0.26 0.17 0.09 0.06
1.2 0.33 0.22 0.13 0.08
1.4 0.40 0.29 0.18 0.12
1.6 0.48 0.36 0.23 0.16
1.8 0.56 0.44 0.30 0.22
2.0 0.64 0.52 0.37 0.28
2.2 0.71 0.59 0.45 0.36
24 0.77 0.67 0.53 0.43
2.6 0.83 0.74 0.61 0.51
2.8 0.88 0.80 0.68 0.59
3.0 0.91 0.85 0.75 0.66
32 0.94 0.89 0.78 0.70
3.4 0.96 0.93 0.86 0.80
3.6 0.97 0.95 0.90 0.85
3.8 0.98 0.97 0.94 0.91
4.0 0.99 0.98 0.95 0.92

Reprinted with permission from Welkowitz et al. (1982),
Table H

The d-value becomes 0.08 and the delta value is
1.60. Referring to Table E.3, we find that with alpha set
at the traditional 5% level, the power is 48% so there
is still a 52% chance of Type 1l error (missing a differ-
ence) even with this “hefty” sample size. The problem
in this example is that the alternative hypothesis pre-
dicts a close race. If the researcher wants to distinguish
advantages that are this small, even larger tests must be
conducted to be conclusive.

We can then turn the situation around and ask how
many consumers should be in the test given the small
win that is expected, and the importance of a “no-
preference” conclusion? We can use the following
relationship for proportions:

a(3)

For a required power of 80% and keeping alpha at
the traditional 5% level, we find that a delta value of
2.80 is required. Substituting in our example, we get

2.80\2
N=2< ):2450

(E.5)

0.08
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This might not seem like a common consumer
test for sensory scientists, who are more concerned
with alpha-risk, but in marketing research or politi-
cal polling of close races, these larger samples are
sometimes justified, as our example shows.

E.5 Summary and Conclusions

Equations for the required sample sizes for scaled data
and for discrimination tests were given by Egs. (E.1)
and (E.3), respectively. The equation for power for
scaled data was given in Eq. (E.2). The corresponding
equation for choice data from discrimination tests is

Za~/Po(1 = po)/N — (po _Pa):|
Vpa(l — pa)/N

Power:l—ﬁ:l—cb[

(E.6)

Table E.4 summarizes these formulae.

A finding of “no difference” is often of impor-
tance in sensory evaluation and in support of product
research. Many business decisions in foods and con-
sumer products arc made on the basis of small product
changes for cost reduction, a change of process vari-
ables in manufacturing, a change of ingredients or
suppliers. Whether or not consumers will notice the
change is the inference made from sensory rescarch.
In many cases, insurance is provided by performing a
sensitive test under controlled conditions. This is the
philosophy of the “safety net” approach, paraphrased
as follows: “If we do not see a difference under con-
trolled conditions using trained (or selected, screened,
oriented, etc.) panelists, then consumers are unlikely
to notice this change under the more casual and vari-
able conditions of natural observation.” This logic
depends upon the assumption that the laboratory test
is in fact more sensitive to sensory differences than
the consumer’s normal experience. Remember that
the consumer has extended opportunities to observe
the product under a variety of conditions, while the
laboratory-based sensory analysis is often limited in
time, scope, and the conditions of evaluation.

As stated above, a conclusion of “no difference”
based only on a failure to reject the null hypothesis is
not logically airtight. If we fail to reject the null, at least
three possibilities arise: First, there may have been too
much error or random noise in the experiment, so the
statistical significance was lost or swamped by large
standard deviations. It is a simple matter to do a sloppy
experiment. Second, we may not have tested a suf-
ficient number of panelists. If the sample size is too
small, we may miss statistical significance because the
confidence intervals around our observations are sim-
ply too wide to rule out potentially important sensory
differences. Third, there may truly be no difference
(or no practical difference) between our products. So
a failure to reject the null hypothesis is ambiguous and
it is simply not proper to conclude that two products
are sensorially equivalent simply based on a failure to
reject the null. More information is needed.

One approach to this is experimental. If the sensory
test is sensitive enough to show a difference in some
other condition or comparison, it is difficult to argue
that the test was simply not sensitive enough to find
any difference in a similar study. Consideration of a
track record or demonstrated history of detecting dif-
ferences with the test method is helpful. In a particular
laboratory and with a known panel, it is reasonable
to conclude that a tool, which has often shown differ-
ences in the past, is operating well and is sufficiently
discriminative. Given the history of the sensory proce-
dure under known conditions, it should be possible to
use this sort of common sense approach to minimize
risk in decision making. In an ongoing sensory testing
program for discrimination, it would be reasonable to
use a panel of good size (say 50 screened testers), per-
form a replicated test, and know whether the panel had
shown reliable differences in the past.

Another approach is to “bracket” the test compar-
ison with known levels of difference. In other words,
include extra products in the test that one would
expect to be different. Baseline or positive and nega-
tive control comparisons can be tested and if the panel
finds significant differences between those benchmark

Table E.4 Sample size and power formulas (see text for details)

Form of data Sample size Power

. [ Zu/poT=p)+Zg o/ paT=pa) ]2 _ [zm/go(1—550)/N—g£30—g},)]
Proportion or frequency N = — o=pe] 1—-® NV
Scaled or continuous N = % 1—-o [)%] =1- [Z“(sg#]




