Hydrogenation of Oil by

Dr. Mitali Madhumita

Definition: Hydrogenation is a process that reduces unsaturated fatty acid content of triglycerides by attaching hydrogen atoms at the point of unsaturation in the presence of catalyst, usually Nickel.

- ➤ Hydrogenation is a process in which a liquid unsaturated fat is turned into a solid fat by adding hydrogen.
- Hydrogenation accomplishes two things-:
 - It increases the melting point of the oil or fat.
 - Resistance to oxidation and flavor deterioration.
- ➤ Hydrogenation process depends on several parameters:
 - Pressure& Temperature,
 - Type of catalyst,
 - Speed of agitation etc.

- ➤ Hydrogenation converts the liquid oils into semisolid or plastic fats for special applications, such as in shortenings (100% fat) and margarine (80% fat), and it improves the oxidative stability of the oil .
- ➤ Hydrogenation requires a catalyst to make the reaction to go at a reasonable rate. The reaction will go without a catalyst , but it needs extremely high temperatures.
- A metal catalyst provides an alternate pathway with a lower activation energy. This allows the reaction to take place at lower temperatures.
- > Hydrogenation includes the formation of a saturated compound from an unsaturated compound.

Necessity for Hydrogenation

- Hydrogenated fat is basically a substitute to butter fats.
- Hydrogenated oil helps to increase shelf life and save cost.
- ➤ High costs of butter fat and its poor storage stability were detrimental factors that led to the investigation of alternative sources of hard fats.
- This investigation led to the invention of catalyzed H2 addition across unsaturated sites of oils and fats and was quickly commercialized.
- Conversion of liquid oils to solid and semi-solid fats having wide spectrum of physical & chemical characteristics of products were thus obtained

MECHANISM

- ➤ The mechanism involved in fat hydrogenation is believed to be the reaction between unsaturated liquid oil and atomic hydrogen adsorbed on a metal catalyst. It is similar to hydrogenation of alkenes.
- ➤ Generally, hydrogenation reactions will not occur between hydrogen and organic compounds below 480 degrees Celsius without metal catalysts.
- ➤ Catalysts are responsible for binding the H2molecule and facilitating the reaction between the hydrogen and the substrate.

- ➤ Platinum, palladium, rhodium, and ruthenium are known to be active catalysts which can operate at lower temperatures and pressures.
- Research is ongoing to procure non-precious metal catalysts which can produce similar activity at lower temperatures and pressures.
- Nickel-based catalysts, such as Raney nickel, have been developed, but still require high temperatures and pressures.

Hydrogen Dry, As pure as possible (usually >99.8%)

- > Oil
- Refined,
- Bleached,
- Very low in soap(under 25 ppm)and dry.
- Moisture-Less than 0.05%
- FFA-Less than 0.05%

- > Catalyst-
- Reduced Nickel:Concentration-0.01-0.02% (Palladium, Platinum can also be used but avoided due to their high costs)

REACTION CONDITIONS PARAMETER

• Condition Temperature: 140-250°C

• Hydrogen Pressure: 40-60 psi

• Agitator Speed:75-150 rpm

• Cool Water Temperature: 10-20°C

• Cooled Oil Temperature: 70-80°C

• Time: 40-60 min

Monitoring End of Reaction

Technique Used Principle

Refractive Index: Refractive Index decreases on hydrogenation

Iodine Value: Iodine value decreases on hydrogenation

Melting Point: Melting point increases on hydrogenation

Peroxide Value: Peroxide value decreases on hydrogenation

Colour: Colour becomes darker on hydrogenation

