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Basic Statistical Concepts for Sensory Evaluation
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It is important when taking a sample or designing an
experiment to remember that no matter how powerful
the statistics used, the inferences made from a sample
are only as good as the data in that sample. ... No
amount of sophisticated statistical analysis will make
good data out of bad data. There are many scien-
tists who try to disguise badly constructed experiments
by blinding their readers with a complex statistical
analysis.

—O’Mahony (1986, pp. 6, 8)

H.T. Lawless, H. Heymann, Sensory Evaluation of Food, Food Science Text Series,

This chapter provides a quick introduction to statistics
used for sensory evaluation data including measures of
central tendency and dispersion. The logic of statisti-
cal hypothesis testing is introduced. Simple tests on
pairs of means (the z-tests) are described with worked
examples. The meaning of a p-value is reviewed.

A.1 Introduction

The main body of this book has been concerned with
using good sensory test methods that can generate
quality data in well-designed and well-executed stud-
ies. Now we turn to summarize the applications of
statistics to sensory data analysis. Although statistics
are a necessary part of sensory research, the sensory
scientist would do well to keep in mind O’Mahony’s
admonishment: statistical analysis, no matter how
clever, cannot be used to save a poor experiment.
The techniques of statistical analysis, do however,
serve several useful purposes, mainly in the efficient
summarization of data and in allowing the sensory
scientist to make reasonable conclusions from the
information gained in an experiment. One of the most
important conclusions is to help rule out the effects
of chance variation in producing our results. “Most
people, including scientists, are more likely to be con-
vinced by phenomena that cannot readily be explained
by a chance hypothesis” (Carver, 1978, p. 387).
Statistics function in three important ways in the
analysis and interpretation of sensory data. The first is
the simple description of results. Data must be summa-
rized in terms of an estimate of the most likely values
to represent the raw numbers. For example, we can
describe the data in terms of averages and standard
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deviations (a measure of the spread in the data). This is
the descriptive function of statistics. The second goal
is to provide evidence that our experimental treatment,
such as an ingredient or processing variable, actually
had an effect on the sensory properties of the product,
and that any differences we observe between treat-
ments were not simply due to chance variation. This
is the inferential function of statistics and provides a
kind of confidence or support for our conclusions about
products and variables we are testing. The third goal
is to estimate the degree of association between our
experimental variables (called independent variables)
and the attributes measured as our data (called depen-
dent variables). This is the measurement function of
statistics and can be a valuable addition to the normal
sensory testing process that is sometimes overlooked.
Statistics such as the correlation coefficient and chi-
square can be used to estimate the strength of relation-
ship between our variables, the size of experimental
effects, and the equations or models we generate from
the data.

These statistical appendices are prepared as a gen-
eral guide to statistics as they are applied in sensory
evaluation. Statistics form an important part of the
equipment of the sensory scientist. Since most eval-
uation procedures are conducted along the lines of
scientific inquiry, there is error in measurement and a
need to separate those outcomes that may have arisen
from chance variation from those results that are due to
experimental variables (ingredients, processes, pack-
aging, shelf life). In addition, since the sensory scien-
tist uses human beings as measuring instruments, there
is increased variability compared to other analytical
procedures such as physical or chemical measurements
done with instruments. This makes the conduct of sen-
sory testing especially challenging and makes the use
of statistical methods a necessity.

The statistical sections are divided into separate
topics so that readers who are familiar with some
arcas of statistical analysis can skip to sections of
special interest. Students who desire further expla-
nation or additional worked examples may wish
to refer to O’Mahony (1986), Sensory Evaluation
of Foods, Statistical Methods and Procedures. The
books by Gacula et al. (2009), Statistical Methods in
Food and Consumer Research, and Piggott (1986),
Statistical Procedures in Food Research, contain infor-
mation on more complex designs and advanced topics.
This appendix is not meant to supplant courses in

statistics, which are recommended for every sensory
professional.

It is very prudent for sensory scientists to maintain
an open dialogue with statistical consultants or other
statistical experts who can provide advice and sup-
port for sensory research. This advice should be sought
carly on and continuously throughout the experimen-
tal process, analysis, and interpretation of results. R.
A. Fisher is reported to have said, “To call the statisti-
cian after the experiment is done may be no more than
asking him to perform a postmortem cxamination: he
may be able to tell you what the experiment died of”
(Fisher, Indian Statistical Congress, 1938). To be fully
effective, the sensory professional should use statistical
consultants carly in the experimental design phase and
not as magicians to rescue an experiment gone wrong.
Keep in mind that the “best” experimental design for a
problem may not be workable from a practical point of
view. Human testing can necessarily involve fatigue,
adaptation and loss of concentration, difficulties in
maintaining attention, and loss of motivation at some
point. The negotiation between the sensory scientist
and the statistician can yield the best practical result.

A.2 Basic Statistical Concepts

Why are statistics so important in sensory evaluation?
The primary reason is that there is variation or error
in measurement. In sensory evaluation, different par-
ticipants in a sensory test simply give different data.
We need to find the consistent patterns that are not due
to chance variation. It is against this background of
uncontrolled variation that we wish to tell whether the
experimental variable of interest had a reliable effect
on the perceptions of our panelists. Unfortunately, the
variance in our measurements introduces an element
of risk in making decisions. Statistics are never com-
pletely foolproof or airtight. Decisions even under the
best conditions of experimentation always run the risk
of being wrong. However, statistical methods help us
to minimize, control, and estimate that risk.

The methods of statistics give us rules to estimate
and minimize the risk in decisions when we general-
ize from a sample (an experiment or test) to the greater
population of interest. They are based on considera-
tion of three factors: the actual measured values, the
error or variation around the values, and the number
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of observations that are made (sometimes referred to
as “sample size,” not to be confused with the size of a
food sample that is served). The interplay of these three
factors forms the basis for statistical calculations in all
of the major statistical tests used with sensory data,
including #-tests on means, analysis of variance, and
F-ratios and comparisons of proportions or frequency
counts. In the case of r-test on means, the factors are
(1) the actual difference between the means, (2) the
standard deviation or error inherent in the experimen-
tal measurement, and (3) the sample size or number of
observations we made.

How can we characterize variability in our data?
Variation in the data produces a distribution of values
across the available measurement points. These distri-
butions can be represented graphically as histograms.
A histogram is a type of graph, a picture of frequency
counts of how many times each measurement point is
represented in our data set. We often graph these data
in a bar graph, the most common kind of histogram.
Examples of distributions include sensory thresholds
among a population, different ratings by subjects on a
sensory panel (as in Fig. A.1), or judgments of product
liking on a 9-point scale across a sample of consumers.
In doing our experiment, we assume that our mea-
surements are more or less representative of the entire
population of people or those who might try our prod-
uct. The experimental measurements are referred to
as a sample and the underlying or parent group as a
population. The distribution of our data bears some
resemblance to the parent population, but it may dif-
fer due to the variability in the experiment and error in
our measuring.

Frequency
(number of respondents)

i 2 3 4 5 6 7 8 9 10 1
Rating on a 15-point scale

12 18 14 15

Fig. A.1 A histogram showing a sample distribution of data
from a panel’s ratings of the perceived intensity of a sensory
characteristic on a 15-point category scale.

A.2.1 Data Description

How do we describe our measurements? Consider a
sample distribution, as pictured in Fig. A.1. These
measurements can be characterized and summarized
in a few parameters. There are two important aspects
we use for the summary. First, what is the best single
estimate of our measurement? Second, what was the
variation around this value?

Description of the best or most likely single value
involves measures of central tendency. Three are com-
monly used: the mean is commonly called an average
and is the sum of all data values divided by the number
of observations. This is a good representation of the
central value of data for distributions that are symmet-
ric, i.e., not too heavily weighted in high or low values,
but evenly dispersed. Another common measure is the
median or 50th percentile, the middle value when the
data are ranked. The median is a good representation of
the central value even when the data are not symmetri-
cally distributed. When there are some extreme values
at the high end, for example, the mean will be unduly
influenced by the higher values (they pull the average
up). The median is simply the middle value after the
measurements are rank ordered from lowest to highest
or the average of the two middle values when there is
an even number of data points. For some types of cat-
egorical data, we need to know the mode. The mode
is the most frequent value. This is appropriate when
our data are only separated into name-based categories.
For example, we could ask for the modal response to
the question, when is the product consumed (breakfast,
lunch, dinner, or snack)? So a list of items or responses
with no particular ordering to the categories can be
summarized by the most frequent response.

The second way to describe our data is to look
at the variability or spread in our observations. This
is usually achieved with a measure called the stan-
dard deviation. This specifies the degree to which our
measures are dispersed about the central value.

The standard deviation of such an experimental
sample of data (S) has the following form:

(A1)

where M = mean of X scores = (X X)/N.
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The standard deviation is more easily calculated as

. Jzéilx%— G0N
N-—1

Since the experiment or sample is only a small rep-
resentation of a much larger population, there is a
tendency to underestimate the true degree of variation
that is present. To counteract this potential bias, the
value of N-1 is used in the denominator, forming what
is called an “unbiased estimate” of the standard devia-
tion. In some statistical procedures, we do not use the
standard deviation, but its squared value. This is called
the sample variance or S2 in this notation.

Another useful measure of variability in the data is
the coefficient of variation. This weights the standard
deviation for the size of the mean and can be a good
way to compare the variation from different methods,
scales, experiments, or situations. In essence the mea-
sure becomes dimensionless or a pure measure of the
percent of variation in our data. The coefficient of vari-
ation (CV) is expressed as a percent in the following
formula:

S
CV(%) = IOOM (A.3)

where S is the sample standard deviation and M is the
mean value. For some scaling methods such as mag-
nitude estimation, variability tends to increase with
increasing mean values, so the standard deviation by
itself may not say much about the amount of error in
the measurement. The error changes with the level of
mean. The coefficient of variation, on the other hand,
is a relative measure of error that takes into account the
intensity value along the scale of measurement.

The example below shows the calculations of the
mean, median, mode, standard deviation, and coef-
ficient of variation for data shown in Table A.I.

N=41

Mean of the scores = (ZX)/IN=2+3+3+4+...+
11+ 12+13)/41 =7.049

Median = middle score =7

Mode = most frequent score = 6

Standard deviation = S

Table A.1 First data set, rank ordered
5
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. ¢ >N X — ((202/N)
N N—1

2,303 —(83,521)/41
= \/ ( )/ =12.578

a 40
CV (%) = 100 (S/mean) = 100 (2.578/7.049) =
36.6%.

A.2.2 Population Statistics

In making decisions about our data, we like to infer
from our experiment to what might happen in the pop-
ulation as a whole. That is, we would like our results
from a subsample of the population to apply equally
well when projected to other people or other products.
By population, we do not necessarily mean the pop-
ulation of the nation or the world. We use this term
to mean the group of people (or sometimes products)
from which we drew our experimental panel (or sam-
ples) and the group to which we would like to apply
our conclusions from the study. The laws of statistics
tell us how well we can generalize from our experiment
(or sensory test) to the rest of the population of interest.
The population means and standard deviations are usu-
ally denoted by Grecek letters, as opposed to standard
letters for sample-based statistics.

Many things we measure about a group of people
will be normally distributed. That means the values
form a bell-shaped curve described by an equation
usually attributed to Gauss. The bell curve is symmet-
ric around a mean value—values are more likely to
be close to the mean than far from it. The curve is
described by its parameters of its mean and its standard
deviation as shown in Fig. A.2. The standard deviation
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Fig. A.2 The normal
distribution curve is described
by its parameters of its mean
and its standard deviation.
Areas under the curve mark
off discrete and known
percentages of observations.

Important properties of the normal distribution curve:

1) areas (under the curve) correspond
to proportions of the population.

2) each standard deviation subsumes
a known proportion

3) Since proportions are related to probabilities,
we know how likely or unlikely certain values are going to be.
Extreme scores (away from the mean) are rare or improbable.

mean
A

+2 +3

(marks off equal standard deviation units)

of a population, o, is similar to our formula for the
sample standard deviation as is given by

(A4)

where

X = each score (value for each person, product); &
= population mean; N = number of items in popula-
tion.

How does the standard deviation relate to the nor-
mal distribution? This is an important relationship,
which forms the basis of statistical risk estimation and
inferences from samples to populations. Because we
know the exact shape of the normal distribution (given
by its equation), standard deviations describe known
percentages of observations at certain degrees of dif-
ference from the mean. In other words, proportions
of observations correspond to areas under the curve.
Furthermore, any value, X, can be described in terms
of a Z-score, which states how far the value is from the
mean in standard deviation units. Thus,

(AS5)

Z-scores represent differences from the mean value
but they are also related to areas under the normal
curve. When we define the standard deviation as one
unit, the Z-score is also related to the area under the
curve to the left of right of its value, expressed as a
percentage of the total area. In this case the z-score
becomes a useful value to know when we want to
see how likely a certain observation would be and
when we make certain assumptions about what the
population may be like. We can tell what percent of
observations will lie a given distance (Z-score) from
the mean. Because the frequency distribution actually
tells us how many times we expect different values to
occur, we can convert this z-score to a probability value
(sometimes called a p-value), representing the area
under the curve to the left or right of the Z-value. In
statistical testing, where we look for the rarity of calcu-
lated event, we are usually examining the “tail” of the
distribution or the smaller area that represents the prob-
ability of values more extreme than the z-score. This
probability value represents the area under the curve
outside our given z-score and is the chance (expected
frequency) with which we would see a score of that
magnitude or one that is even greater. Tables convert-
ing z-values to p-values are found in all statistics texts
(see Table A).



478

Appendix A

A.3 Hypothesis Testing and Statistical
Inference

A.3.1 The Confidence Interval

Statistical inference has to do with how we draw con-
clusions about what populations are like based on
samples of data from experiments. This is the logic that
is used to determine whether our experimental vari-
ables had a real effect or whether our results were
likely to be due to chance or unexplained random
variation. Before we move on to this notion of statisti-
cal decision making, a simpler example of inferences
about populations, namely confidence intervals, will be
illustrated.

One example of inference is in the estimation of
where the true population values are likely to occur
based on our sample. In other words, we can examine
the certainty with which our sample estimates will fall
inside a range of values on the scale of measurement.
For example, we might want to know the follow-
ing information: Given the sample mean and standard
deviation, within what interval is the true or population
value likely to occur? For small samples, we use the -
statistic to help us (Student, 1908). The z-statistic is like
Z, but it describes the distribution of small experiments
better than the z-statistic that governs large popula-
tions. Since most experiments are much smaller than
populations, and sometimes are a very small sample
indeed, the #-statistic is useful for much sensory evalu-
ation work. Often we use the 95% confidence interval
to describe where the value of the mean is expected
to fall 95% of the time, given the information in our
sample or experiment.

For a mean value M of N observations, the 95%
confidence interval is given by

M+t (S/Jﬁ) (A.6)
where ¢ is the t-value corresponding to N—1 degrees
of freedom (explained below), that includes 2.5% of
expected variation in the upper tail outside this value
and 2.5% in the lower tail (hence a two-tailed value,
also explained below). Suppose we obtain a mean
value of 5.0 on a 9-point scale, with a standard devia-
tion of 1.0 in our sample, and there are 15 observations.
The r-value for this experiment is based on 14 or n — 1
degrees of freedom and is shown in Table B to be

2.145. So our best guess is that the true mean lies in
the range of 5+ 2.145(1/4/15) or between 4.45 and
5.55. This could be useful, for example, if we wanted
to insure that our product had a mean score of at least
4.0 on this scale. We would be fairly confident, given
the sample values from our experiment that it would in
fact exceed this value.

For continuous and normally distributed data, we
can similarly estimate a 95% confidence interval on the
median (Smith, 1988), given by

Med + 1.253¢ (S/«/IV) (A7)

For larger samples, say N > 50, we can replace the
t-value with its Z approximation, using Z = 1.96 in
these formulas for the 95% confidence interval. As
the number of observations increases, the r-distribution
becomes closer to the normal distribution.

A.3.2 Hypothesis Testing

How can we tell if our experimental treatment had an
effect? First, we need to calculate means and standard
deviations. From these values we do further calcu-
lations to come up with values called test statistics.
These statistics, like the Z-score mentioned above,
have known distributions, so we can tell how likely or
unlikely the observations will be when chance varia-
tion alone is operating. When chance variation alone
seems very unlikely (usually one chance in 20 or
less), then we reject this notion and conclude that our
observations must be due to our actual experimental
treatment. This is the logic of statistical hypothesis
testing. It is that simple.

Often we need a test to compare means. A use-
ful statistic for small experiments is called Student’s
t-statistic. Student was the pseudonym of the origi-
nal publisher of this statistic, a man named Gosset
who worked for the Guinness Brewery and did not
want other breweries to know that Guinness was using
statistical methods (O’Mahony, 1986). By small exper-
iments, we mean experiments with numbers of obser-
vations per variable in the range of about 50 or less.
Conceptually, the r-statistic is the difference between
the means divided by an estimate of the error or uncer-
tainty around those means, called the standard error of
the means.
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Imagine that we did our experiment many times
and each time calculated a mean value. These means
themselves, then, could be plotted in a histogram and
would have a distribution of values. The standard error
of the mean is like the standard deviation of this sam-
pling distribution of means. If you had lots of time and
money, you could repeat the experiment over and over
and estimate the population values from looking at the
distribution of sample mean scores. However, we do
not usually do such a series of experiments, so we need
a way to estimate this error. Fortunately, the error in
our single experiment gives us a hint of how likely it
is that our obtained mean is likely to reflect the popu-
lation mean. That is, we can estimate that the limits of
confidence are around the mean value we got. The laws
of statistics tell us that the standard error of the mean
is simply the sample standard deviation divided by the
square root of the number of observations (“N). This
makes sense in that the more observations we make,
the more likely it is that our obtained mean actually
lies close to the true population mean.

In order to test whether the mean we see in our
experiment is different from some other value, there
are three things we need to know: the mean itself, the
sample standard deviation, and the number of obser-
vations. An example of this form of the r-test is given
below, but first we need to take a closer look at the
logic of statistical testing.

The logical process of statistical inference is simi-
lar for the r-tests and all other statistical tests. The only
difference is that the r-statistic is computed for testing
differences between two means, while other statistics
are used to test for differences among other values, like
proportions, standard deviations, or variances. In the #-
test, we first assume that there is no difference between
population means. Another way to think about this is
that it implies that the experimental means were drawn
from the same parent population. This is called the null
hypothesis. Next, we look at our #-value calculated in
the experiment and ask how likely this value would
be, given our assumption of no difference (i.e., a true
null hypothesis). Because we know the shape of the #-
distribution, just like a Z-score, we can tell how far out
in the tail our calculated r-statistic lies. From the area
under the curve out in that tail, we can tell what percent
of the time we could expect to see this value. If the #-
value we calculate is very high and positive or very
low and negative, it is unlikely—a rare event given our
assumption. If this rarity passes some arbitrary cutoff

point, usually one chance in 20 (5%) or less, we con-
clude that our initial assumption was probably wrong.
Then we make a conclusion that the population means
are in fact different or that the sample means were
drawn from different parent populations. In practical
terms, this usually implies that our treatment variable
(ingredients, processing, packaging, shelf life) did pro-
duce a different sensory effect from some comparison
level or from our control product. We conclude that the
difference was not likely to happen from chance varia-
tion alone. This is the logic of null hypothesis testing. It
is designed to keep us from making errors of conclud-
ing that the experiment had an effect when there really
was only a difference due to chance. Furthermore, it
limits our likelihood of making this mistake to a max-
imum value of one chance in 20 in the long run (when
certain conditions are met, see postscript at the end of
this chapter).

A.3.3 A Worked Example

Here is a worked example of a simple #-test. We do
an experiment with the following scale, rating a new
ingredient formulation against a control for overall
sweetness level:

I:ll O O El| O O IT|
much less about the much more
sweet same sweet

We convert their box ratings to scores 1 (for the left-
most box) through 7 (for the rightmost). The data from
ten panelists are shown in Table A.2.

We now set up our null hypothesis and an alternative
hypothesis different from the null. A common notation
is to let the symbol H, stand for the null hypothesis and

Table A.2 Data for r-test example

Panelist Rating
1 5
2 5
3 6
4 4
5 3
6 7
7 5
8 5
9 6

10 4
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H, stand for the alternative. Several different alterna-
tives are possible, so it takes some careful thought as to
which one to choose. This is discussed further below.
The null hypothesis in this case is stated as an equa-
tion concerning the population value, not our sample,
as follows:

H,: n =4.0. This is the null hypothesis.
Hy: i # 4.0 This is the alternative hypothesis.

Note that the Greek letter “mu” is used since these
are statements about population means, not sample
means from our data. Also note that the alternative
hypothesis is non- directional, since the population
mean could be higher or lower than our expected value
of 4.0. So the actual t-value after our calculations might
be positive or negative. This is called a two-tailed test.
If we were only interested in the alternative hypothe-
sis (H,) with a “greater than” or “less than” prediction,
the test would be one tailed (and out critical z-value
would change) as we would only examine one end of
the #-distribution when checking for the probability and
significance of the result.

For our test against a mean or fixed value, the #-test
has the following form:

e
~ S/VN

where M is the sample mean, S is the standard devia-
tion, N is the number of observations (judges or pan-
elists, usually), and p is the fixed value or population
mean.

Here arc the calculations from the data set
above:

(A.8)

Mean = X X/N=5.0

X =50
X2 =262
(TX)? = 2500

G JV(262) = (2500)/10
o 9

=1.155

. 50-40 1
©1.155//10 0365

So our obtained #-value for this experiment is 2.740.
Next we need to know if this value is larger than what

= 2.740

we would expect by chance less than 5% of the time.
Statistical tables for the ¢-distribution tell us that for a
sample size of 10 people (so degrees of freedom = 9),
we expect a f-value of £2.262 only 5% of the time. The
two-tailed test looks at both high and low tails and adds
them together since the test is non-directional, with ¢
high or low. So this critical value of +2.262 cuts off
2.5% of the total arca under the #-distribution in the
upper half and —2.262 cuts off 2.5% in the lower half.
Any values higher than 2.262 or lower than —2.262
would be expected less than 5% of the time. In statis-
tical talk, we say that the probability of our obtained
result then is less than 0.05, since 2.738 > 2.262. In
other words, we obtained a #-value from our data that
is even more extreme than the cutoff value of 2.262.

So far all of this is some simple math, and then
a cross-referencing of the obtained f-value to what
is predicted from the tabled f-values under the null
hypothesis. The next step is the inferential leap of sta-
tistical decision making. Since the obtained #-value was
bigger in magnitude than the critical t-value, H, is
rejected and the alternative hypothesis is accepted. In
other words, our population mean is likely to be dif-
ferent than the middle of our scale value of 4.0. We do
not actually know how likely this is, but we know that
the experiment would produce the sort of result we see
only about 5% of the time when the null is true. So
we infer that it is probably false. Looking back at the
data, this does not seem too unreasonable since seven
out of ten panelists scored higher than the null hypoth-
esis value of 4.0. When we reject the null hypothesis,
we claim that there is a statistically significant result.
The use of the term “significance” is unfortunate, for in
simple everyday English it means “important.” In sta-
tistical terms significance only implies that a decision
has been made and does not tell us whether the result
was important or not. The steps in this chain of rea-
soning, along with some decisions made early in the
process about the alpha-level and power of the test, are
shown in Fig. A.3.

A.3.4 A Few More Important Concepts

Before going ahead, there are some important concepts
in this process of statistical testing that need further
explanation. The first is degrees of freedom. When we
look up our critical values for a statistic, the values are
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STATISTICAL
FLOWCHART

Formulate null and
alternative hypotheses

l

[ Choose alpha level for Type | error ]

\/
Choose sample size
Calculate beta risk, power

l

[ (conduct experiment, gather data) ]

\ 4
Calculate summary statistics
Central tendency and variation

l

Calculate statistics
for Hypothesis tests

l

Compare statistics to critical levels
or probability values to alpha

l

Decision time:
reject null, withhold judgment
L or accept null (depending on power) )

l

[ Draw conclusions and make recommendations ]

Fig. A.3 Steps in statistical decision making in an experi-
ment. The items before the collection of the data concern the
experimental design and statistical conventions to be used in
the study. After the data are analyzed the inferential process
begins, first with data description, then computation of the test
statistic, and then comparison of the test statistic to the criti-
cal value for our predetermined alpha-level and the size of the
experiment. If the computed test statistic is greater in magni-
tude than the critical value, we reject the null hypothesis in
favor of the alternative hypothesis. If the computed test statis-
tic has a value smaller in magnitude than the critical value,
we can make two choices. We can reserve judgment if the
sample size is small or we can accept the null hypothesis
if we are sure that the power and sensitivity of the test are
high. A test of good power is in part determined by having a
substantial number of observations and test sensitivity is deter-
mined by having good experimental procedures and controls (see
Appendix E).

frequently tabled not in terms of how many observa-
tions were in our sample, but how many degrees of
freedom we have. Degrees of freedom have to do with
how many parameters we are estimating from our data
relative to the number of observations. In essence, this
notion asks how much the resulting values would be
free to move, given the constraints we have from esti-
mating other statistics. For example, when we estimate
a mean, we have freedom for that value to move or
change until the last data point is collected. Another
way to think about this is the following: If we knew
all but one data point and already knew the mean, we
would not need that last data point. It would be deter-
mined by all the other data points and the mean itself,
so it has no freedom to change. We could calculate
what it would have to be. In general, degrees of free-
dom are equal to the sample size, minus one for each
of the parameters we are estimating. Most statistics
are tabled by their degrees of freedom. If we wanted
to compare the means from two groups of N1 and N>
observations, we would have to calculate some param-
cters like means for each group. So the total numbers of
degrees of freedom are Ny—1 + Np—1, or N| + No—2.

A second important consideration is whether our
statistical test is a one- or a two-tailed test. Do we
wish to test whether the mean is simply different from
some value or whether it is larger or smaller than
some value? If the question is simply “different from”
then we need to examine the probability that our test
statistic will fall into cither the low or high tail of its
distribution. As stated above in the example of the sim-
ple r-test, if the question is directional, e.g., “greater
than” some value, then we examine only one tail. Most
statistical tables have entries for one- and two-tailed
tests. It is important, however, to think carefully about
our underlying theoretical question. The choice of sta-
tistical alternative hypotheses is related to the research
hypothesis. In some sensory tests, like paired prefer-
ence, we do not have any way of predicting which
way the preference will go, and so the statistical test
is two-tailed. This is in contrast to some discrimina-
tion tests like the triangle procedure. In these tests we
do not expect performance below chance unless there
is something very wrong with the experiment. So the
alternative hypothesis is that the true proportion cor-
rect is greater than chance. The alternative is looking
in one direction and is therefore one-tailed.

A third important statistical concept to keep in mind
is what type of distribution you are concerned with.
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There are three different kinds of distributions we have
discussed. First, there are overall population distribu-
tions. They tell us what the world would look like
if we measured all possible values. This is usually
not known, but we can make inferences about it from
our experiments. Second, we have sample distributions
derived from our actual data. What does our sample
look like? The data distribution can be pictured in a
graph such as a histogram. Third, there are distribu-
tions of test statistics. If the null hypothesis is true, how
is the test statistic distributed over many experiments?
How will the test statistic be affected by samples
of different sizes? What values would be expected,
what variance due to chance alone? It is against these
expected values that we examine our calculated value
and get some idea of its probability.

A.3.5 Decision Errors

Realizing that statistical decisions are based on prob-
abilities, it is clear that some uncertainty is involved.
Our test statistic may only happen 5% of the time under
a true null hypothesis, but the null might still be true,
even though we rejected it. So there is a chance that
our decision was a mistake and that we made an error.
It is also possible sometimes that we fail to reject the
null, when a true difference exists. These two kinds of
mistakes are called Type I and Type II errors. A Type I
error is committed when we reject the null hypothesis
when it is actually true. In terms of a f-test comparison
of means, the Type I error implies that we concluded
that two population means are different when they are
in fact the same, i.c., our data were in fact sampled
from the same parent population. In other words, our
treatment did not have an effect, but we mistakenly
concluded that it did. The process of statistical testing
is valuable, though, because it protects us from com-
mitting this kind of error and going down blind alleys
in terms of future research decisions, by limiting the
proportion of times we could make these decisions.
This upper limit on the risk of Type I error (over the
long term) is called alpha-risk.

As shown in Table A.3, another kind of error occurs
when we miss a difference that is real. This is called
a Type 1II error and is formally defined as a failure to
reject the null hypothesis when the alternative hypoth-
esis is actually true. Failures to detect a difference in

Table A.3 Statistical errors in decision making

Outcome of sensory

evaluation
Difterence No difference
reported reported
True situation Products are ~ Correct Type II error
different decision Prob. is
beta-risk
Products are  Type I error  Correct
not Prob. is decision
different alpha-risk

a t-test or more generally to fail to observe that an
experimental treatment had an effect can have impor-
tant or even devastating business implications. Failing
to note that a revised manufacturing process was in
fact an improvement would lose the potential benefit
if the revision were not adopted as a new standard pro-
cedure. Similarly, revised ingredients might be passed
over when they in fact produce improvements in the
product as perceived by consumers. Alternatively, bad
ingredients might be accepted for use if the modi-
fied product’s flaws are undetected. It is necessary to
have a sensitive enough test to protect against this kind
of error. The long-term risk or probability of making
this kind of mistake is called beta-risk, and one minus
the beta-risk is defined as the statistical power of the
test. The protection against Type II error by statisti-
cal means and by experimental strategy is discussed in
Appendix E.

A.4 Variations of the t-Test

There are three kinds of #-tests that are commonly used.
One is a test of an experimental mean against a fixed
value, like a population mean or a specific point on
a scale like the middle of a just-right scale, as in the
example above. The second test is when observations
are paired, for example, when each panelist evaluates
two products and the scores are associated since each
pair comes from a single person. This is called the
paired #-test or dependent ¢-test. The third type of r-test
is performed when different groups of panelists eval-
uate the two products. This is called the independent
groups f-test. The formulas for each test are simi-
lar, in that they take the general form of a difference
between means divided by the standard error. However,
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the actual computations are a bit different. The sec-
tion below gives examples of the three comparisons of
means involving the 7-statistic.

One type of r-test is the test against a population
mean or another fixed value, as we saw above in our
example and Eq. (A.8). The second kind of #-test is
the test of paired observations also called the depen-
dent r-test. This is a useful and powerful test design in
which each panelist evaluates both products, allowing
us to eliminate some of the inter-individual variation.
To calculate this value of #, we first arrange the pairs
of observations in two columns and subtract each one
from the other member of the pair to create a difference
score. The difference scores then become the num-
bers used in further calculations. The null hypothesis
is that the mean of the difference scores is zero. We
also need to calculate a standard deviation of these dif-
ference scores, and a standard error by dividing this
standard deviation by the square root of N, the number
of panelists

. Maise
Saitt/!/N

where Mgigr is the mean of the difference scores and
Sqirr 1s the standard deviation of the difference scores.
Here is an example of a r-test where each panelist
tasted both products and we can perform a paired 7-test.
Products were rated on a 25-point scale for acceptance.
Note that we compute a difference score (D) in this
situation, as shown in Table A .4.

(A9)

Table A.4 Data for paired r-test example

Panelist Product A Product B Difference  (Difference)?
1 20 22 2 4
2 18 19 | 1
3 19 17 -2 4
4 22 18 —4 16
5 17 21 4 16
6 20 23 3 9
7 19 19 0 0
8 16 20 4 16
9 21 22 1 1

10 19 20 1 1

Calculations:

sum of D = 10, mean of D = 1
sum of D? = 68
standard deviation of D =

YX, D} = ((ED)?/N)
Saift = N

/68 — (100/10
= +/)=2.539,

and f comes from

. M gife _ 1.0 _ 195
Sate/~N  2.5390/+/10

This value does not exceed the tabled value for the
5%, two-tailed limit on ¢ (at 9 df), and so we conclude
there is insufficient evidence for a difference. In other
words, we do not reject the null hypothesis. The two
samples were rather close, compared to the level of
error among panelists.

The third type of t-test is conduced when there are
different groups of people, often called an independent
groups t-test. Sometimes the experimental constraints
might dictate situations where we have two groups that
taste only one product each. Then a different formula
for the 7-test applies. Now the data are no longer paired
or related in any way and a different calculation is
needed to estimate the standard error, since two groups
were involved and they have to be combined somehow
to get a common estimate of the standard deviations.
We also have some different degrees of freedom, now
given by the sum of the two group sizes minus 2 or
(NGroupt *+ NGroup2—2). The 7-value is determined by

_M] — M,

t= (A.10)

SEpooled

where M| and M are the means of the two groups and
SEpooled is the pooled standard error. For the indepen-
dent r-test, the pooled error requires some work and
gives an estimate of the error combining the error lev-
els of the two groups. The pooled standard error for
two groups, X and Y, is given by the following formula:

[ml - ((ZX)Z/NI) +3y2 — (<2y)2/N2)]

(N1 +Ny—-2)

SEpooled = J [I/Nl + 1/N2]

(A.11)

Here is a worked example of an independent group’s
t-test. In this case, we have two panels, one from
a manufacturing site and one from a research site,
both evaluating the perceived pepper heat from an
ingredient submitted for use in a highly spiced product.
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The product managers have become concerned that the
plant QC panel may not be very sensitive to pepper
heat due to their dietary consumption or other factors,
and that the use of ingredients is getting out of line
with what research and development personnel feel is
an appropriate level of pepper. So the sample is evalu-
ated by both groups and an independent group’s #-test
is performed. Our null hypothesis is that there is no
difference in the population means and our alternative
hypothesis that the QC plant will have lower mean rat-
ings in the long run (one-tailed situation). The data
set is comprised of pepper heat ratings on a 15-point
category scale as shown in Table A.5.

Table A.5 Data for independent group’s #-test

Manufacturing QC panel (X) R&D test panel (Y)
7 9

12 10
6 8
5 7
8 7
6 9
7 8
4 12
5 9
3

First, some preliminary calculations:

N =10 Tx=63 Mean=0630 x2=453 (Tx)>=3969
Ny=9 Xy=79 Mean=28.78 Xy2=713 (Zy)?=6291

Now we have all the information we need to calcu-
late the value of

3969 6241
[453 — 29 4713 — T]

=0.97
(10+9—2)

SEpooled = J (1/10+ 1/9)

t =[(6.30-8.78)]/0.97 = —2.556.

Degrees of freedom are 17 (= 10 + 9 — 2). The
critical t-value for a one-tailed test at 17 df is 1.740,
so this is a statistically significant result. Our QC panel
does seem to be giving lower scores for pepper heat
than the R&D panel.

Note that the variability is also a little higher in the
QC panel. Our test formula assumes that the variance
is about equal. For highly unequal variability (1 SD
more than three times that of the other) some adjust-
ments must be made. The problem of unequal variance

becomes more serious when the two groups are also
very different in size. The t-distribution becomes a
poor estimate of what to expect under a true null,
so the alpha-level is no longer adequately protected.
One approach is to adjust the degrees of freedom
and formulas for this are given in advanced statis-
tics books (e.g., Snedecor and Cochran, 1989). The
non-pooled estimates of the f-value are provided by
some statistics packages and it is usually prudent to
examine these adjusted #-values if unequal group size
and unequal variances happen to be the situation with
your data.

A.4.1 The Sensitivity of the Dependent
t-Test for Sensory Data

In sensory testing, it is often valuable to have each
panelist try all of the products in our test. For sim-
ple paired tests of two products, this enables the use
of the dependent t-test. This is especially valuable
when the question is simply whether a modified pro-
cess or ingredient has changed the sensory attributes
of a product. The dependent #-test is preferable to the
separate-groups approach, where different people try
each product. The reason is apparent from the calcula-
tions. In the dependent #-test, the statistic is calculated
on a difference score. This means that the differences
among panelists in overall sensory sensitivity or even
in their idiosyncratic scale usage are removed from the
situation. It is common to observe that some panelists
have a “favorite” part of the scale and may restrict their
responses to one section of the allowable responses.
However, with the dependent #-test, as long as panelists
rank order the products in the same way, there will
be a statistically significant result. This is one way to
partition the variation due to subject differences from
the variation due to other sources of error. In general,
partitioning of error adds power to statistical tests, as
shown in the section on repeated measures (or com-
plete block) ANOVA (see Appendix C). Of course,
there are some potential problems in having people
evaluate both products, like sequential order effects
and possible fatigue and carry-over effects. However,
the advantage gained in the sensitivity of the test
usually far outweighs the liabilities of repeated testing.



