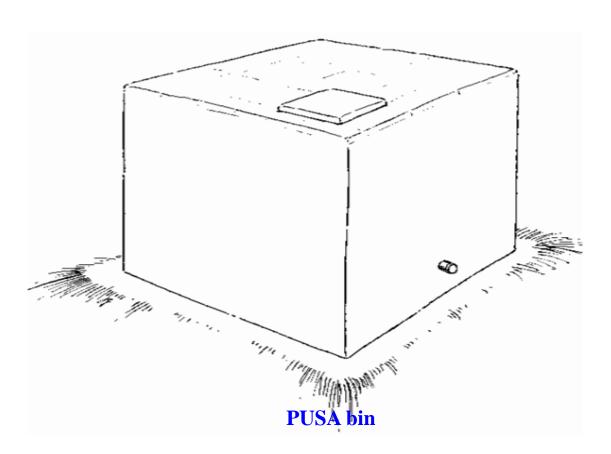
- 1. Insect proof bins
- 2. Insect proof bags
- 3. Traps
- 4. Irradiation
- 5. Nanoparticles
- 6. Silos
- 7. Microwave technology
- 8. Controlled atmosphere
- 9. Low & high temperatures

1. Insect proof bags

HDPE bags with lamination inside



Grain pro bag

Zero fly bag

2. Insect proof bins

3. UV light trap

5. Nanoparticles

Some commonly used nanoparticles are

✓ Silver nanoparticles like AgNO₃

✓ Silica like; diatomaceous earth, synthetic silica (SiO₂), sands, Silica Aerogel

✓ Zinc oxide (ZnO3),

✓ Titanium dioxide (TiO₂)

✓ Copper oxide (Cu₂O),

 \checkmark Aluminium oxide (Al₂O₃),

6. Silos

7. Microwave technology

- ➤ Microwave dis-infestation seems to have a great potential as an alternative method of killing insects in stored-grain (Vadivambal *et al.* 2010).
- ➤ Microwave generators can be operated in continuous or pulsed mode.
- > It kills insect stages like larvae, eggs etc.
- > leaves no chemical residues and preserves quality

8. Controlled atmosphere

- ➤ It implies alteration of natural storage gases *i.e.* carbon dioxide, oxygen and nitrogen to render atmosphere in stores detrimental to pests
- \gt It also refers to the process of changing the composition of existing atmosphere by introducing CO_2 or N_2
- ➤ It can be achieved in following
 - 1. Adding gaseous or solid CO₂ (9-10%)
 - 2. Adding N₂ gas
 - 3. Removing O_2 gas(2-4%)
 - 4. Allowing metabolic processes which remove O_2 or add CO_2

9. Use of low and high temperatures

- ➤ Optimal temperature for most of the storage insects is between 25° C and 33°C
- **▶**Temperatures between 13°C and 25° C will slow development
- **≻**High temperatures of 37° C and above will stop development