It 1s common knowledge that a sharp knife aids cutting. It 1s important, however, to
distinguish between sharpness and fineness. A fine knife has a small bevel angle, ¢y,
while a blunt knife has a large bevel angle. Sharpness 1s defined by the edge radius,
ra, Of the knife, 1.e., a sharp knife has a small radius while a dull knife has a larger
radius. Initial penetration of the knife into the plant material 1s aided 1f the knife rake
angle, @y, 1s large. The knife clearance angle, ¢k, 1s the angle formed between the
bottom edge of the knife and the x-y plane. In general, the following relationship holds
between the rake, bevel, and clearance angles:
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Illustration of geometry of a knife and countershear.
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the chip angle on the knife, ¢, IS
defined as follows:

Ochk = Ppk T Pk

The bevel, rake, clearance, and obligue
angles all have their counterparts on the
countershear, as shown in Figure 11.8. For
each of these angles, the subscript k
indicates that it relates to the knife, while a
subscript ¢ indicates the corresponding
angle

on the countershear. The clip angle, ocl, is
the angle formed between the knife and
countershear, i.e.:
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When ¢, 1s not zero and the plant material is not yet in contact with the counter-
shear, the possibility exists that the plant material may slide along the edge of the
knife before or while being cut. The sliding is expected if the oblique angle is greater
than the following maximum angle:

¢::|k,max = arctan fek {1 1-4)

where f, = knife edge friction coefficient. The knife edge friction coefficient is the
lateral force (parallel to the knife edge) imposed by the plant on the knife edge divided
by the normal force imposed by the plant. When the plant is in contact with both the
knife and countershear, sliding is expected if the clip angle is greater than the follow-
Ing maximum:

f&k + fv:::

Gcl.max = arctan (11.5)
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where Q.. = maximum value of ¢, that will prevent sliding
f.x = friction coefficient for knife edge
f.. = friction coefficient for countershear edge
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The bending strength of a plant stem may be important during cutting. For exam-
ple, some devices cut a plant in the absence of a countershear; the plant stem below
the cutting plane is loaded as a cantilever beam. In other situations, the stem may be
loaded as a simply supported beam. In either case, the direction of loading is radial
(perpendicular to the longitudinal axis of the plant stem). The radial load that would
cause failure in bending can be calculated using the following equation:
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where Fy, = ultimate load at bending failure, N
[ = moment of inertia of the cross section, mm*

¢ = radius from neutral axis of stem to most distant load-carrying fiber, mm
or, alternately, I/c = section modulus, mm’
S, = ultimate stress of plant fibers, N/mm°

L = distance from concentrated load to point of support, mm




The deflection of the stem is given by:

F,L’
o, =— (11.7)
C,EI
where 8, = radial deflection, mm
F, = radial concentrated load, N
E = modulus of elasticity of stem fibers, N/mm®
Cy, = constant (3 for cantilevered stems, 48 for simply supported stems).
The moment of inertia of a homogeneous solid, circular section is:
nd?
I= 11.8
64 (118)

where d = diameter of the section, mm. For a hollow, thin-walled section, the moment
of inertia 1s:

_3m d’t
32

I (11.9)

where t = wall thickness, mm. From comparing Equations 11.8 and 11.9, we note
that the moment of inertia of a natural stem should be proportional to the section
diameter raised to an exponent between 3 and 4,
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Illustration of knife forces during cutting



knife motion is the sum of the knife edge force plus x-components of forces imposed
on the top and bottom surfaces of the knife as it compresses and penetrates the plant
material. By assuming that only the material directly ahead of the knife is compressed
and by use of the bulk modulus for the plant material, the following equation for knife
force was derived:

F, F, Bx'
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where F, = knife driving force in x direction, N

Fu = force imposed by plant on the knife edge, N

w = width of knife, mm

B¢ = bulk modulus of forage, N/mm~

x = knife displacement afier initial contact, mm

A = exponent

Xpy = uncompressed depth of material between knife and countershear, mm

{y, = bevel angle of knife edge

f' = coefficient of friction of forage on knife

Theoretically, A = 2 in Equation 11.10. However, a smaller exponent gives a better

fit to some experimental cutting data. In an experiment in which a thin (X, = 8.9 mm)
bed of timothy at 20% moisture was cut at a very low (0.42 mm/s) knife speed, Equa-
tion 11.10 fit the data when A = 1.46 and B;= 10 N/mm". The knife edge force is cal-
culated as the product of the projected frontal area of the knife edge times the pressure
imposed on that edge by the forage. The approximate frontal area can be calculated
from the following equation:

Ay = uk[l+¢05(¢hk +¢'ck)] (11.11)

where Ay = frontal area of knife edge per mm of width, mm’
re = radius of knife edge, mm



Figure 11.15 shows the typical shape of the force-displacement curve when plant
material is cut by a knife and countershear. In Section A, only compression occurs as
the knife edge force is not yet high enough to cause cutting. After initial stem failure,
some compression continues in Section B along with cutting. In section C, the material
is fully compressed; cutting continues and then the force drops rapidly as the knife
edge crosses the edge of the countershear. With suitable choice of parameters, the
force in Sections A and B could be calculated using Equation 11.10. Section C does
not involve compression so Equation 11.10 does not fit that section. The diagram in
Figure 11.15 is for a straight cut, i.e., with ¢, = 0. For an oblique cut, the peak cutting
force would be reduced and the duration of cut would be extended compared to Figure
11.15.

A-Compression only
B-Compression & cutting
C-Cutting only
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Figure 11.15 - Knife force-displacement curve for a straight cut

against a countershear.



Figure 11.15 is useful in calculating the power requirement for cutting with a knife
and countershear. The energy per cut is equal to the area under the cutting force curve;
multiplying by the cutting frequency gives the power. The following equation can be
used to compute the power requirement for cutting:
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where P, = power for cutting, kW

Fymax = maximum cutting force, kN

Xpu = depth of material at initial contact with knife, mm (see Figure 11.15)

fon = cutting frequency, cuts/min

Cg¢ = ratio of average to peak cutting force
Cy 1s always be between 0 and | and, for a typical force-displacement curve as illus-
trated in Figure 11.15, it is approximately equal to 0.64.



The cutting force, F,, must be supported. If a countershear is present and clearance
is small, the support force can be provided entirely by the countershear. When no
countershear is present, the support force must be provided entirely by the plant itself
through the bending strength of the stump below the cut and the inertia of the plant
above the cut. The resulting cut is called, alternatively, an impact cut, an inertia cut, or
a free cut. As clearance with a countershear increases, the plant strength and inertia
come increasingly into play; thus, impact cutting is similar to countershear cutting
with very large clearance. Figure 11.16 illustrates the forces and moments on the plant
during impact cutting. The soil and the plant root system provide a force, Fg, and a
moment, M,, which tend to keep the stump upright. Acceleration of the stump is con-
sidered to be negligible. Force Fg represents the combined effects of the root system
and stalk strength in providing bending resistance at the height of the cut. The center
of gravity of the cut portion of the plant is at a height, z.,, above the cut. The impact
shown 1n Figure 11.16 tends to accelerate the cut plant to the rnight and counterclock-
wise; consequently, an inertia force and inertia moment appear on the plant at the cen-
ter of gravity. The following equation results from summing moments about the center
of gravity of the cut plant:

Lo, =(F, —F,)z, (11.13)

where o, = angular acceleration of plant, radians/s”
F, = cutting force, N
F, = bending resistance of stump, N
7., = height of center of gravity of cut plant, m (see Figure 11.16)
I, = centr?idal moment of inertia of plant, kg m”
=m, r,” where m, = mass of cut portion of plant, kg
r, = radius of gyration of cut portion of plant, m

center of grovity
of cut plant

Figure 11.16 — Forces and moments in impact cutting.



An analysis of the kinematics (motions) of the plant gives the following equation
for angular acceleration:

a, —a,
o, =— & (11.14)
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where a; = acceleration of plant at plane of cut, m/s”
e = acceleration of plant center of gravity, m/s”
By assuming that the plant acquires knife velocity at the plane of cut, the following
equation was derived:
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(11.15)

where v, = knife velocity, m/s
d, = stalk diameter at plane of cut, mm
Equations 11.13 through 11.15 can be combined to give the following equation for
minimum knife velocity for impact cutting:
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When values for r, and z., are not readily available, a simpler approximate equation
can be obtained by assuming that r,= z_,. The simpler equation illustrates the key vari-
ables involved in impact cutting. If the stump bending resistance, F,, is large enough
to support the entire cutting force, F,, the minimum required knife velocity is zero and
cutting 1s equivalent to cutting with a countershear. Lowering the height of cut to in-
crease Fy, and reducing F, by maintaining a sharp knife will both reduce the minimum
required knife velocity. Tests of impact cutting of timothy, for example, have shown
that cutting could be accomplished at knife velocities as low as 25 m/s but velocities
of 45 m/s were required for reliable cutting of all stems. To assure reliable cutting over
a wide range of knife sharpness and stem stiffness, minimum knife velocities of 50 to
75 m/s are generally recommended. Example Problem 11.2 illustrates the calculation
of minimum knife velocity for impact cutting.



