Chapter 12

Color and Appearance

Abstract In this chapter we discuss what color is and then go on to describe color
vision. We pay attention to variations in normal color vision due to genetic variations
in the color receptor genes as well as to color blindness. We then discuss the mea-
surement of appearance with attention to turbidity and glossiness. Instrumental color
measurements are briefly described with special attention to the Munsell, RGB, and
various CIE color systems.

Some days are yellow.
Some days are blue.
On different days I'm different too.
You’d be surprised how many ways
I change on different colored days.
On bright RED days how good it feels
to be a horse and kick my heels!
—(My Many Colored Days by Dr. Seuss)
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12 Color and Appearance

Scientific studies have also shown that the color of
the product affects our perception of other attributes,
such as aroma, taste, and flavor. For example, DuBose
et al. (1980) found that the number of correct iden-
tification of fruit-flavored beverage flavors decreased
significantly when the beverage was atypically colored
and that the number of correct identifications increased
when the beverage was colored correctly. Shankar et al.
(2009) studied the effect of color and label on per-
ceived chocolate intensity and likability of brown and
green milk and dark chocolate M&Ms (candy-coated
chocolate buttons) and found that the color and the
label affected the perceived chocolate intensity but not
the likability. Additionally, they found no interaction
effect of label and color. Christensen (1983) found that
when sighted panelists scored the aroma intensity of
appropriately and inappropriately colored cheese, soy
analog bacon, margarine, raspberry-flavored gelatin
and orange drink, the perceived intensity of the
appropriately colored product was higher than for
the inappropriately colored product. Interestingly, the
bacon analog was a notable exception. The effect
on perceived flavor intensity was less pronounced
and there was no effect on perceived texture of the
products.

Osterbauer et al. (2005) showed through func-
tional magnetic resonance imaging (fMRI) of the
brains of their subjects that as these subjects increased
their rating of color—odor matches their brain activ-
ity in the caudal regions of the orbitofrontal cor-
tex and in the insular cortex increased progres-
sively with their perceptions of color-odor congruency.
Therefore, these color—flavor interactions are likely
“real.”

Based on these studies and others (Dematt¢ et al.,
2009; Stevenson and Oaten, 2008) we can con-
clude that not only is the color and appearance
of foods and products important to the consumer
in and of themselves, but that color and appear-
ance affect the consumers’ perceptions of other sen-
sory modalities in that food or product as well.
Therefore it is very important that the sensory spe-
cialist knows how to ask panelists to evaluate product
appearance and color and how to perform sensory
tests to minimize the subjects’ color and appearance
biases from affecting the sensory results of other
modalities.

12.2 Whatls Color?

Color is the perception in the brain that results from the
detection of light after it has interacted with an object.
The perceived color of an object is affected by three
entities: the physical and chemical composition of the
object, the spectral composition of the light source illu-
minating the object, and the spectral sensitivity of the
viewer’s eye(s). As we will see in the following discus-
sion changing any one of these entities can change the
perceived color of the object.

The light striking an object may be refracted,
reflected, transmitted, or absorbed by that object. If
nearly all the radiant energy in the visible range of the
electromagnetic spectrum is reflected from an opaque
surface then the object appears white. If light through
entire visible range of the electromagnetic spectrum is
absorbed in part then the object appears gray. If light
from the visible spectrum is absorbed almost com-
pletely then the object appears black. This also depends
upon the surrounding conditions. The black type from
this book in direct sunlight reflects more light than the
white page under a reading lamp, yet they appear black
and white under both conditions due to their relative
reflectance of light.

The color of an object can vary in three dimen-
sions, namely hue, this is typically what the consumer
refers to as the “color” of the object (for example,
green); lightness, also called the brightness of the
object (light versus dark green); and saturation, also
called the purity or chroma of the color (pure green
versus grayish green). The perceived hue of an object
is the perception of the color of the object and results
from differences in the absorption of radiant energy at
various wavelengths by the object. Thus if the object
absorbs more of the longer wavelengths and reflects
more of the shorter wavelengths (400-500 nm) then
the object will be described as blue. An object with
maximum light reflection in the medium wavelengths
results in an object described as yellow-green in color
and an object with maximal light reflection in the
longer wavelengths (600700 nm) will be described
as red in color. The lightness (value) of the perceived
color of an object indicates the relationship between
reflected and absorbed light with no regard to spe-
cific wavelength(s) involved. The chroma (saturation
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or purity) of the color indicates how much a specified
color differs from gray.

The visual perception of color arises from stim-
ulation of photoreceptors in the retina by light in
greater intensities at some wavelengths than others in
the visible region (380-770 nm; Table 12.1) of the
electromagnetic spectrum. The entire electromagnetic
spectrum encompasses gamma rays (wavelengths of
1075 nm) to radio waves (wavelengths at 1013 nm).
However, the photoreceptors in the human eye only
respond to a small range of this energy. Thus, color
is an appearance property attributable to the spectral
distribution of light interacting with the photoreceptors
in the eye and visual color perception is the brain’s
response to this stimulus of the photoreceptors that
results from the detection of light after it has interacted
with an object. Or stated differently, wavelengths in
the visual portion of the electromagnetic spectrum not
absorbed by the viewed object are seen by the eye and
interpreted by the brain as color.

Table 12.1 Visible portion of the electromagnetic spectrum

Color Wavelength range (nm)
Violet 380-400
Blue 400475
Green 500-570
Yellow 570-590
Orange 590-700
Red 700-770

Certainly color is an appearance property of an
object attributable to the spectral distribution of
light emanating from that object. However, gloss,
transparency, haziness, and turbidity are appearance
properties of materials attributable to the geometric
manner in which light is reflected and transmitted.
Something as simple as uneven reflection of light from
a surface can make the object appear dull or matte.
If the reflection is stronger at a specific angle or in a
beam, then the resultant perception of gloss or sheen
is a result of specular and/or directional reflectance.
The reflectance is caused by the surface of the object.
Smooth objects reflect in a directional manner and
irregular, patterned, or particulate objects reflect light
diffusely. The appearance of an object is affected
by the optical properties associated with the object,

namely the geometric light distribution, over the sur-
face of the object and within the object if it is not
opaque, the translucence of the object, the gloss, the
size, shape, viscosity (Hutchings, 1999).

12.3 Vision

The light reflected from an object, or the light passing
through an object, falls on the cornea of the viewer’s
eye(s), travels through the aqueous humor to the lens,
and from there travels through the vitreous humor to
the retina, where most of the light falls on or near a
small hollow in the retina, the foveal pit. The visual
receptors, the rods and cones, are located in the retina
of the eye. These receptors contain light-sensitive pig-
ments which change shape when stimulated by light
energy, leading to the generation of clectrical nerve
impulses which travel along the optic nerves to the
brain. There are approximately 120 million rods in
the retina and the rods are capable of operating at
extremely low light intensities (less than 1 lux). The
rods yield only achromatic (black/white) information
and under low-light conditions humans have scotopic
vision with no color perception. This is why we cannot
sce colors by moonlight (““all cats are gray in the dark™)
although we can usually see well enough to move
around. The maximum rod concentration is approxi-
mately 20° from the foveal area, this area is called
the parafovea. Thus under low levels of illumination
an object is more likely to be perceived when viewed
slightly from the side than directly, called averted
vision (Hutchings, 2002).

The 6 million cones operate at higher light inten-
sities (levels of illumination) and provide chromatic
information (color), allowing photopic vision. The
cones are concentrated on the fovea, a small (2 mm
diameter) depression located in a yellow colored spot
(macula lutea) on the retina, where the highest color
resolution occurs. When viewing an object, the uncon-
scious movement of our eyes serves to bring the
image of the object onto the foveal areas. The cones
contain three color-sensitive pigments each respond-
ing most sensitively to red (two polymorphic vari-
ants at ~560 nm), the L-pigment also known as the
p-receptors; to green (at ~530 nm), the M-pigment
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also known as the y-receptors; or to blue (at ~420 nm),
the S-pigment also known as the p-receptors (Deeb,
2006; Hutchings, 2002). A phenomenon called the
Purkinje shift occurs under decreasing light conditions
when humans become more sensitive to blue-green,
with blues seemingly becoming brighter and reds rel-
atively darker. Due to the Purkinje shift at very low
light intensities the reds will appear almost black and
the blues will appear gray.

12.3.1 Normal Human Color Vision
Variations

It has been shown that variations in normal color vision
are due to polymorphisms in the L- and M-pigments
with amino acid substitutions at position 180 (alanine
versus serine) accounting for most of the variations
(Merbs and Nathans, 1992, 1993). There are addi-
tional amino acid substitutions at positions 277 and
285 but these are not as well studied, yet. In humans
with normal color vision, Deeb (2005) found that
among Caucasian males, 62% have serine at position
180 in the L-pigments (Lgerine) and 38% have alanine
(Lalanine)- Using a color-matching test (the Rayleigh
test) they asked their subjects to match a standard yel-
low (590 nm) light with a mixture of red (644 nm) and
green (541 nm) lights. They found that males need-
ing less red light to make the match (hence ones that
were more sensitive to red light) were much more
likely to have serine at position 180 of the L-pigment.
The L-pigments are linked to the X-chromosome, thus
men have two variants (about 60% express Lgerine and
about 40% Lgjanine) and women have three variants
(about 50% of women are heterozygous and express
both Lgerine and Lyjanine; and the other 50% of women
homozygously express either Lyjanine O Lerine)- Pardo
et al. (2007) showed that due to the above gender-
related L-pigment expressions, on average women per-
ceive some colors significantly differently from men.
Jameson et al. (2001) specifically showed those women
who were homozygous for the L- or M-pigments did
not perform differently from men but those women
who were heterozygous to L- and/or M-pigments had
a relatively richer color experience. Additionally, age-
ing, glaucoma, and cataracts affect color vision. Older
subjects (60-70 years old) perceive colored surfaces to
be less chromatic (“‘colored”) than subjects under 30
years of age (Hutchings, 2002).

12.3.2 Human Color Blindness

Humans either lacking one or more of the L-, M-, and
S-pigments or having specific mutations in these pig-
ments fall in various color-blind categories and com-
prise about 8% of males and 0.44% of females. Color-
blind individuals are classified into different groups.
The first group is the protanopes or protoanomalous
trichromats who have no or a reduced ability, respec-
tively, to see red due to absence or anomaly with
p-receptors (L-pigments) and comprise about 1/4 of
the color-blind population. The second group is the
deuteranopes or deuteranomalous trichromats who
have no or a reduced ability, respectively, to see
green due to absence or anomaly with y-receptors (M-
pigments) and comprise about 3/4 of the color-blind
population. The last and by far the smallest group is
the tritanopes who have no or a reduced ability to
see blue due to absence or anomaly with B-receptors
(S-pigments). The genes for the more common forms
of color blindness are recessive and carried on the
X-chromosome. Thus the trait is seen much more
frequently with men than with women.

It is possible to test panelists for color blindness
and all panelists should be screened if they will be
evaluating the color of samples. Techniques include
pseudo-isochromatic plates such as the Ishihara plates,
created in 1917, the Farnsworth Dichotomous Test
for Color Blindness, or the Farnsworth—-Munsell
110 Hue test (Farnsworth, 1943). Ishihara pseudo-
isochromatic plates and the various Farnsworth tests
can be obtained from any reputable optometric supply
company.

12.4 Measurement of Appearance
and Color Attributes

12.4.1 Appearance

Some scientists (Hutchings, 1999) maintain that prod-
uct appearance is inclusive of product color and other
appearance properties such as physical form (shape,
size, and surface texture), temporal aspects (move-
ment, etc.), and optical properties (reflectance, trans-
mission, glossiness, etc.) For our purpose we will
discuss color and appearance as separate entities, while



124 Measurement of Appearance and Color Attributes

287

keeping in mind that appearance attributes clearly
affect perceived color.

Usually, physical appearance characteristics can
easily be measured through sensory techniques.
Standard descriptive techniques can quantify size,
shape, and visual surface textures using simple inten-
sity scales. An example would be “amount of chocolate
chips visible on the surface of the cookie.” In this
case, “amount” might be rated from none to many, with
examples being given in training to anchor the high and
low ends of the scale. Visual texture is another exam-
ple that lends itself well to simple intensity scales, such
as apparent roughness of the surface, size or number
of surface indentations, and density or amount of sed-
iment in a container of a liquid product. Most of these
simple and concrete attributes require little training and
can be easily worked into a descriptive profile of the
product. Of course, as in any other descriptive tech-
nique, the scale becomes more calibrated and there is
better agreement among panelists if the low and high
ranges are shown to provide the frame of reference that
anchors the scale.

In food, temporal appearance characteristics are
more rarely measured, even though they exist.
Examples would be the viscosity of molasses as it
drips from a spoon, the jiggle of JellO® or the stringi-
ness of pizza cheese. Optical properties (reflectance,
transmission, glossiness, etc.) have been called “cesia”
(Caivano et al., 2004); however, this term has not yet
been widely used in the appearance research world. In
the following section we will discuss few food-relevant
appearance optical properties such as turbidity, translu-
cency, and glossiness.

12.4.1.1 Turbidity (Cloudiness)

An important characteristic of many beverages is how
clear versus how cloudy they appear. Turbidity (cloudi-
ness or haze) occurs when small suspended particles
divert light from a straight path through the mate-
rial and scatter it in different directions. In physical
terms, turbidity is the total light scattered from an inci-
dent beam as it transverses a suspension (Carrasco and
Siebert, 1999). Consumers often expect beverages such
as beer, fruit juices, and wines to be clear. In other
beverages, for example, cider, cloudiness is expected
and here again particulate matter is responsible for the
light scattering. Various steps in beverage processing

may be aimed at reduction in turbidity and increas-
ing the clarity, such as the usc of fining agents in
wine making. In some products such as beer, cider,
and fruit juices, haze development is a function of
polyphenol—protein interactions; others are due to car-
bohydrates and yet others are due to the growth of
microorganisms (Siebert, 2009). Haze can also result
from colloidal or larger particles that may precipitate
in a container.

Instrumental methods for turbidity, such as neph-
elometers, use a focused light beam to measure light
scattering at several angles. It is always prudent to
cross-reference instrumental values to human percep-
tion. It is fairly simple to train a panel to cvaluate tur-
bidity. If the relationship between perceived turbidity
and instrumental turbidity is not well known for a prod-
uct, it is recommended that one performs the human
testing to understand their sensory reactions to the
product (Carrasco and Siebert, 1999). In other words,
light scattering as a physically measured phenomenon
may not tell you what you need to know about per-
ceived turbidity. Relationships between instrumental
measures of light scattering and human sensory ratings
have been determined. Malcolmson et al. (1989) found
a linear relationship between instrumentally measured
turbidity and perceived clarity for commercial apple
juices. Other studies have found relationships between
physical measurements of cloudiness and sensory eval-
uations in different media including coffee (Pangborn,
1982) and beer (Hough et al., 1982; Leedham and
Carpenter, 1977; Venkatasubramanian et al., 1975).
Pieczonka and Cwiekala (1974, cited in Carrasco and
Siebert, 1999) obtained an instrumental-sensory cor-
relation between nephelometer values and a 5-point
sensory scale of —0.81 in juices. Since light scattering
is dependent upon particle size, it should be possible
to measure a direct relationship between sensory clar-
ity and the size and distribution of suspended matter in
a product.

Clarity arises from the transmission of light, and
fluids that transmit more light will appear more translu-
cent. However, the relationship may be complicated by
other factors such as the color of the medium (Siebert,
2009). Carrasco and Siebert (1999) addressed these
issues in model systems and beverages, comparing
turbidimeter results to those of human sensory pan-
els. Haze perception thresholds were measured and
while they varied with particle size and concentra-
tion depending upon the medium, the human sensory



288

12 Color and Appearance

threshold was in a small range of instrumental haze
values of about 0.5 Nephelos Turbidity Units. This
suggested a good sensory—instrumental relationship at
low levels. At ranges above threshold, perceived inten-
sity followed the instrumental response until a satura-
tion level was reached. After this point the instrument
determined values continued to increase, but the sen-
sory response was flat, even if panelists were allowed
to use an open-ended magnitude estimation method of
scaling (see Fig. 12.1). Sensory response (scaled inten-
sity) was predicted on the basis of particle size, particle
concentration, and suspension color.

Two situations arise when sensory—instrumental
correlations break down. The most common example is
when the human responds but the instrument does not,
as in the case of olfactory sensitivities to some com-
pounds which exceed the sensitivity of common ana-
lytical methods in chemistry. Another situation arises
when the instrument responds, but the human does
not. The scaling results in Carrasco and Siebert’s study
provide an interesting example of where the machine
response has a broader dynamic range than the sensory
judge. However, the upper range of turbidity becomes
irrelevant when the sensory response does not change.
This obviously imposes an upper limit on the utility of
turbidimeter responses when a high level of cloudiness
has been reached and the human eye no longer sees any
further increase.

12.4.1.2 Glossiness (Shine)

Another important visual attribute is gloss or shine.
Once again there are a variety of physical instruments
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Fig. 12.1 Haze intensities (geometric means) perceived by sen-
sory panelists using non-modulus magnitude estimation (/eff)
and instrumentally measured turbidity (right) versus particle

to measure light reflectance, but the sensory data are
still important to determine what humans will perceive
in a specific situation. This becomes more important
if the surface is non-uniform, since most instrumen-
tal reflectance measures are designed to work with
uniform surfaces such as paints, waxes, and finishes.
Many foods and consumer products will not conform
well to these conditions. For example, the glaze on
a cake or other baked product may not be a smooth
surface or the shine on an apple may vary across the
surface of the fruit. Just asking panelists about overall
shine without appropriate training with reference stan-
dards may lead to different interpretations by different
panelists, since there are two primary types of light
reflectance. Specular reflectance refers to the mirror-
like shine perceived when the actual image of a light
source appears on the surface of the product (Beck
and Prazdny, 1981). Obviously, standard angles and
viewing conditions are necessary in order to test this
in a reliable manner. Another important type of shine
arises from diffuse reflectance. In this case the light
is reflected, but it is scattered by the surface over
such different angles that the reflected image of the
light source is not seen. Buffing a metal surface with
an abrasive cloth to produce many fine scratches will
result in a good example of a surface with diffuse
reflectance. The surface may seem quite shiny, but
there is no mirror-like image, only the brightness of
the light source. This type of shininess is also quite
common with foods such as glazed doughnuts and egg-
washed bread. A few example of studies on glossiness
are Obein et al. (2004) and Xiao and Brainard (2008)
where objects and pictures were used to determine

0 T T T T T T 1
0002040608 101214
Particle Concentration (mg/mL)

concentration for medium (2.600 mm diameter) particles in clear
(m), yellow (e), and red (A) liquids (Reprinted with permission
from Carrasco and Siebert, 1999).
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perceived glossiness. Chong et al. (2008) created a
machine vision system to evaluate the surface gloss of
eggplant fruit.

Translucency

Translucency is defined as the property of a specimen
by which it transmits light diffusely without permitting
a clear view of objects beyond the specimen (ASTM,
1987). Joshi and Brimelow (2002) gave a simple test
to determine whether a sample is translucent or not.
They suggest measuring the sample with a reflectance
spectrophotometer at maximum area of illumination
and with the maximum viewing aperture. Then repeat
the measurement with the same viewing aperture but
with a smaller area of illumination. If there is a large
increase in the lightness reading (L* in CIELAB, see
below) then the sample is translucent.

This property is important in orange juice
(MacDougall, 2002), tomato skins (Hetherington
et al., 1990), fresh-cut tomatoes (Lana et al., 2006),
and pineapples (Chen and Paull, 2001) where flesh
translucency is a defect associated with off-flavors and
fruit fragility during harvest. Hetherington et al. (1990)
found that increased sensory translucency scores of
tomatoes were associated with increased opacity and
that the translucency scores were inversely related to
the L* values (r=0.774). Standard sensory techniques
are used in the sensory assessment of translucency
and instrumentally a reflectance spectrophotometer
followed by the Kubelka-Munk data analysis is used
(Talens et al., 2002).

The Kubelka-Munk theory is a relatively crude
model to describe light scattering and its effect on
translucency (see Nobbs (1985) as well as Vargas and
Niklasson (1997) for excellent overviews of the the-
ory and its applicability). Simply put a “scattering”
coefficient (S) and an “adsorption” coefficient (K) are
calculated and the ratio (K/S) is related to translu-
cency of the object. For example, Lana et al. (2006)
found that during storage the pericarp of tomato slices
but not that of intact tomatoes became more translu-
cent. The sensory translucency scores were related to
changes in the K/S ratio of the Kubelka-Munk anal-
ysis of the reflection spectra of the sliced tomatoes.
Additionally they found that removing the locular
gel inhibited the development of translucency in the

pericarp.

MacDougall (2002) gives an example that makes
it very clear that only using instrumental values in
measurement of translucent samples can give results
that are totally inconsistent with visually observed val-
ues. In his example, 4-fold orange juice concentrate is
diluted to a concentration of 0.2 and 4. When glasses
of these oranges juices are viewed with overhead
illumination they range from pale yellow (concentra-
tion less than 1) to deep orange (concentration of 4).
Instrumentally, the most dilute juice had the lowest
L* and it was the darkest according to the instru-
ment. On the other hand, the most concentrated juice
had the highest L* and was the lightest according to
the instrument. This occurred due to the loss of light
scatter in the more diluted samples. He cautions that
one should remember that the instrument only sees
light reflected from a limited solid angle while the
human “is influenced by the multidirectionality of illu-
mination, which makes coloured translucent materials
glow.”

One can do a simple experiment to visually demon-
strate the above effect. Pour an equal amount of orange
juice into two identical transparent glasses. Cover both
glasses completely with white paper. The paper cov-
cring the side of one glass should have a circular hole
cut into it the size of a dime (approximately 1.5 cm
in diameter). The paper covering the side of the other
glass should have a circular hole cut into it the size
of a quarter (approximately 2.5 cm in diameter). Then
evaluate the color of the juices by viewing the visible
juice through the holes at a 90° angle. The juice in the
glass covered with the paper with the small hole seems
darker because much of the scattered light is “trapped”
within the glass and not seen by the viewer.

12.4.2 Visual Color Measurement

Sensory evaluation of color is frequently performed.
Sensory scientists have used the whole range of sen-
sory testing tools to do visual color measurements.
For example, Whiting et al. (2004) used triangle and
two-out-of-five difference tests to investigate perceived
color differences in liquid foundation cosmetics; and
Eterradossi et al. (2009) used descriptive analysis and
consumer satisfaction scales to evaluate red and blue
automotive paints with different levels of quality.
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When doing sensory color evaluation it is even light intensity between 750 and 1,200 lux. Also,
more important than usual to standardize all fac- the light source (if it is not a standard illuminant)
tors that can affect the perceived color. In general should be chosen to have a high color rendering
the sensory scientist performing color assessment index (R,, see below) (Hutchings, 1999).
should carefully standardize, control, and report the (c) the panelists’ viewing angle and the angle of light
following: incidence on the sample. These should not be the

same since that leads to specular reflection of the
incident light and a potential glossiness that may
be an artifact of the method. Usually the booth
area is set up with the light source vertically above
the samples and the panelists viewing angle when
they are seated is about 45° to the sample, this
minimizes specular reflection effects.

(a) the background color in the viewing area. Ideally
the background color should be non-reflective and
neutral, usually a matte gray, cream, or off-white is
used (ASTM 1982).

(b) the light source (Table 12.2) in Kelvin and its
intensity (in lux or foot candles) at the product
surface. Eggert and Zook (2008) recommend a

Table 12.2 Light sources, color temperatures, and color rendering indices®

Color rendering

Color Ambiance
Light source temperature (K) description Index (R,) Quality
Candle 1,800 Very warm
High-pressure sodium lamp 2,100 Very warm 22 Poor
40 watt incandescent light bulb 2,770 Warm Close to 100 Excellent
100 watt incandescent light bulb 2,870 Warm Close to 100 Excellent
CIE source A 2,856 Warm Close to 100 Excellent
Warm white fluorescent light
Sylvania T5-warm 3,000 Warm 82 Very good
Metal halide lamp
Sylvania MetalArc ProTech 3,000 Warm 85+ Very good
GroLux Wide Spectrum lamp 3400 Neutral 89 Excellent
Neutral fluorescent light
PureLite 3,500 Neutral 85 Very good
Cool white fluorescent light
Sylvania T5-cool 4,100 Cool 82 Very good
Tungsten/halogen light
SoLux 4,700 Cool 99 Excellent
CIE source B (direct sunlight) 4,870 Cool
Full spectrum fluorescent light
DuroTest Vitalite 5,500 Cool 90 Excellent
Daylight fluorescent light
Sylvania F40D 6,300 Cool-blue 76 Good
CIE source Dgs 6,500 Cool-blue 100 Excellent
Daylight fluorescent light
DuroTest DayLite 65 6,500 Cool-blue 92 Excellent
CIE source C (overcast daylight) 6,774 Cool-blue
CIE source D (daylight) 7,500 Cool-blue

2Values collated from commercial literature and Hutchings (1999)
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(d) the distance from the light source and the product.
This will affect the amount of light incident on the
sample. The light intensity should be measured at
the product surface.

(e) whether the sample is lit with reflected or transmit-
ted light.

Frequently, very little or none of the above infor-
mation appears in the literature associated with food
or personal care product color evaluations. Whiting
et al. (2004) were exceptional in explicitly indicating
the color of the sensory booth wall and table (gray with
specified color system values); the color of the sample
tray bottoms (a gray-woven fabric with specified color
system values); the light source (Dg5 at 1,000 lux); the
viewing distance (60 cm); and the viewing angle (each
sample was subtended at 6°).

In color and appearance evaluations the light source
is usually specified by its color temperature. The color
temperature is determined from the temperature in
Kelvin to which a black body that absorbs all energy
that falls onto it needs to be heated to emit light
of a spectral distribution characteristic of the specific
light source (Table 12.2). The light emitted by the
black body changes as the color temperature changes.
At lower temperatures (2,000 K) the light emitted is
redder, at higher temperatures (about 4,000-5,000 K)
the light is whiter, and at high temperatures (8,000—
10,000 K) the light becomes bluer (1999). Standard
lights used in food color evaluation tend to be illu-
minants A (with a color temperature of 2,856 K), C
(6,774 K), Dg5 (6,500 K), and D (7,500 K). These
illuminants are all based on tungsten filaments. The
spectral distribution of illuminant A is very different
from the spectral distribution of illuminants B and C
(Fig. 12.2). The spectral distribution of illuminant A is
high in red-yellow wavelengths while it is low in blue-
violet wavelengths. Illuminants C and Dsq, through
Dgs, are high in blue wavelengths. Illuminants C, Dgs,
and the other D variants are designed to mimic varia-
tions of daylight. Standard fluorescent lights have very
different spectral distributions (they tend to be more
spiky and less smooth, see F11 in Fig. 12.2) than those
from tungsten and incandescent lamps. The result is
that objects viewed under fluorescent and tungsten
lights often have differences in perceived color than
when the same objects are viewed under say illumi-
nant C. These differences in perceived color occur
because the color depends on the absorption of light by

the product and the incident spectrum’s wavelengths.
For example, under a standard illuminant if the product
absorbs red wavelengths and not those in the green area
of the spectrum the object would look green. However,
if the incident light only has red wavelengths then the
object would not appear green since there were no
green wavelengths to reflect to the eye. Depending on
the light source this object may appear black.

The color rendering index (R,) is a measure of the
effect of an illuminant on the perceived color of an
object (CIE, 1995a). The R, is measured by assess-
ing the size of the color change of eight Munsell color
samples under the light of interest versus a reference
light, usually an incandescent light (a 60 W tungsten
lamp, 2,900 K). Lights with a 100 R, index exactly
reproduce the perceived color of the reference light
(Table 12.2).

Panelists should be tested for color blindness (see
above). If reference color standards are desired they
can be paint chips, Munsell spinning disks, model
products, or digital images (Herndndez ct al., 2004;
Kane et al., 2003). However, when using these stan-
dards the sensory specialist should keep in mind that
the color of the standard and the sample may only be
a metameric match. A metameric match is an apparent
match in the colors of two objects when viewed under
one light source but the colors of the objects are not
matched when viewed under most other light sources
(MacKinney and Little, 1962). Metameric matches
also occur when two objects match under a specified
light source when viewed by one observer but not when
viewed by a second observer (Kuo and Luo, 1996).

Recently, a number of studics have been published
on the use of digital images as reference standards or
the use of virtual product images to evaluate color dif-
ferences in foods. It could be very useful if it were
possible to obtain accurate reproductions of color and
appearance of products as images. These can then be
displayed to the panelists (anywhere in the world) as
long as they are viewed using the identical reference
display and viewing conditions. Kane et al. (2003)
studied the possibility of using digital references for
the brownness of cookies and found that the panelists’
scores when using either digital references or physical
references led to the same trends in differences among
cookie formulations but in some cases the panelists’
scores were lower when using the digital references
than when using the physical references. Herndndez
et al. (2004) created digitally processed color charts of
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Fig. 12.2 The relative wavelength distributions for CIE stan-
dard illuminants A, B, C, Dgs, and D variants and FI1.
IMluminant A has more yellow-red wavelengths, illuminant
Dgs and the D variants have more blue wavelengths, and

Piquillo peppers to use as a color reference standard
and they found that the repeatability of the visual
color chart scores was satisfactory. Examples of dig-
ital images used as reference standards: Pointer et al.
(2002) successfully used digital images of bananas,
tomatoes, oranges, peas, and biscuits (cookies) that
had been perturbed in terms of lightness or color in
triangle tests; Valous et al. (2009) similarly used dig-
ital images of ham slices and successfully determined

540 580 620 A 660nm700

illuminant F11 (a fluorescent light) has a more spiky distri-
bution in terms of wavelengths (Reprinted with permission
from Gernot Hoffman, University of Applied Sciences, Emden,
Germany).

the CIE color characterization of these slices from the
digital images using a computer vision system;
Kang et al. (2008) successfully did something sim-
ilar with a more complex product—bicolor mango
fruit.

When asking panelists to evaluate color the sensory
scientist has to keep in mind that humans are very good
at evaluating color differences when samples are side
by side or when they have access to color standards but
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humans are not good at evaluating color differences
from memory. Additionally, research has shown that
humans are quite good at evaluating hue (see Munsell
color solid) and lightness (value) changes in objects
but not good at discriminating chroma (saturation of
color) changes (Melgosa et al., 2000). Additionally,
Zhang and Montag (2006) confirmed Melgosa and
coworkers’ results and conclude with the following
statement: “...people do not have ready access to
the lower level color descriptors such as the common
attributes used to define color spaces, and that higher
level psychological processing involving cognition and
language may be necessary for even apparently simple
tasks involving color matching and describing color
differences.”

12.5 Instrumental Color Measurement

“There are a bewildering variety of methods and instru-
ments available to the food technologist in the field
of colour measurement. When one is approaching the
subject for the first time or when attempting to devise
a method for a material outside the normal experience
the wealth of possibilitics available sometimes makes
the choice difficult” (Joshi and Brimelow, 2002). In
the next section we will endeavor to shed some light
on color measurement. For additional information
the following are suggested: Hutchings (1999, 2003),
MacDougall (2002), and Lee (2005).

12.5.1 Munsell Color Solid

Prior to the advent of instrumental techniques, sev-
eral visual color solids were developed to describe
color; one of the more famous was the Munsell color
solid. The Munsell color solid was developed by
A.H. Munsell around 1900 (Clydesdale, 1978). The
Munsell system had three attributes: hue (H), value
(V), and chroma (C). A specific color was described
as a point in the three-dimensional hue—value—chroma
space. In the Munsell color solid (or color space)
the hue—value and chroma values for each color were
arranged in a sphere composed of individual color
“plates” separated by equal visual steps (Fig. 12.3).
Hues are spaced around the circumference with ten

major hues (grouped into major divisions of red,
yellow-red, yellow, green-yellow, green, blue-green,
blue, purple-blue, purple, and red-purple), each being
ten hue steps apart. These hue steps were supposed to
be equal but research has shown that the hue spacing
in the yellow-red, yellow-green, and blue regions is
actually not equally spaced (Oleari, 2001). The value
is a darkness or lightness scale with absolute black
(at the bottom of the sphere) to absolute white (at the
top of the sphere).The chromatic colors are positioned
at the value that is equally spaced between absolute
black and absolute white. The chroma is the amount by
which a given hue deviates from a neutral gray of the
same value. The chroma of a hue is imagined as a line
of constant hue drawn from the center of the sphere to
the edge of the sphere at a constant value.

Visual color solid systems are useful when one
wants to specify a color but one always needs a human
to do the matching of the sample color to the color solid
(usually a color chip). However, due to the idiosyn-
cratic nature of color vision, it was not possible to have
an instrument measure color as specified in Munsell

Munsell Color System

—* Hue
gy o

Chroma l

Value

Red-Purple

Purple-Blue Blue
Blue-Green
0
Fig. 12.3 A schematic of the Munsell color solid

indicating the three dimensions of hue, chroma, and light-
ness (From Jacobolus, Wikimedia Commons, http://en.
wikipedia.org/wiki/File:Munsell-system.svg. ~ This  file is
licensed under the Creative Commons Attribution ShareAlike
2.5 License. In short: you are free to share and make derivative
works of the file under the conditions that you appropriately
attribute it and that you distribute it only under a license
identical to this one).
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notation. In order to develop instrumentation that could
measure color, it was necessary to devise mathematical
relationships to describe color (the so-called mathe-
matical color solids).

12.5.2 Mathematical Color Systems

In order to develop meaningful mathematical color
systems the approach used by Munsell had to be
changed. Mathematical color systems are based on
the physical laws related to the addition of lights
and these are based on the existence of L-, M-, and
S-receptor cones and rods in the human eye. The most
used mathematical color systems are the CIE ver-
sions. The CIE acronym is based on the French name
for the International Commission on Illumination or
“La Commission Internationale de I’Eclairage” (CIE,
1978, 1986). In order to explain the CIE system it is
easier to start with a less complex version, the so-called
three lights system. The three lights system simply
specifies color in terms of how colors are perceived by
the human eye.

12.5.2.1 The R, G, B Mathematical Color System

Three projectors, one with a red filter (R), one with a
green filter (G), and one with a blue filter (B), are set
up to shine on a screen in such a way that they com-
pletely overlap. The sum of the wavelengths hitting the
screen, the so-called spectral radiant flux, is perceived
by an observer as a single color. Then, another pro-
jector with an unknown color filter is projected onto
a separate portion of the same screen. It is now possi-
ble to adjust the energy (radiant flux) projected through
the R, G, and B filters on the first three projectors
until the combined radiant flux from these projectors
matches the unknown color. One can then specify the
unknown color as the energy combination from R, G,
and B. The amounts of energy required to match the
unknown from each of the three lights are the so-called
tristimulus values. These values may be expressed as
radiant flux (watts), luminous flux (lumens), or, more
usually, in arbitrary psychophysical scales of red, blue,
and green.

In practice this approach is overly simple leading to
a number of problems. Some colors are too bright to
match because no light source can project the required

radiant flux. Other colors are too saturated. For exam-
ple, some yellows cannot be matched using just red
and green filters even if the blue filter is eliminated.
“Matchable colors” are within the color gamut (or
the acceptable color range) of a specific mathematical
color system while “non-matchable colors” are out-
side the color range. Even if different filters had been
chosen for the three projectors in this simple system
it is still not possible to match all colors. In theory,
the three lights system is based on the physiological
response of the three cone types of the eye. In prac-
tice, it is further simplified by isolating the responses
that are analogous to actual physiological responses.
This simplification results in the unfortunate effect that
there are always some colors outside the color gamut
because ncarly all parts of the color magnetic spec-
trum excite more than one of the cones to some extent.
If it were possible to find a part of the spectrum that
excited only one cone type while having no effect on
the other two cone types, then a color gamut based on
the three lights system would include all perceived col-
ors. Despite its limitations, the three color system has
been used extensively as the basis for other tristimulus
color systems.

It is possible to express the color matching produced
by the three lights algebraically (Clydesdale, 1978). If
we assume that C is a color in the three-dimensional
color space and its color is matched by the three lights
red, green, and blue with tristimulus values R, G and
B, then the following equation describes the color
match:

CrGp =R+G+B (12.1)

Based on the physical law of additivity of lumi-
nances, the intensity of color C (also known as the
luminance L) in the three-dimensional space can be
described by the next equation:

L=R+Ilg+ 18 (12.2)

where [ Ig, and /g are the luminances (intensities) of
the corresponding light primaries in their unit amount
with R =B = G = 1. If the tristimulus values R, G, and
B of color C are changed by a constant factor “a” then
the luminance of C changes to “aL.” If color D with
tristimulus values Rp, Gp, and Bp is added to color C
with tristimulus values Gc, Bc, and Rc then the new



12.5 Instrumental Color Measurement

295

color E has tristimulus values of Rg, Gg, and Bg. This
can be expressed algebraically:

ERg.Gy.Br) = (Rc + Rp) + (Gc + Gp) + (B¢ + Bp)
(12.3)

So, the tristimulus values of a mixture of colors are
equal to the sum of the tristimulus values of the com-
ponent colors. Based on the above explanation it is
possible to describe both the luminance (/) and tristim-
ulus values r, g, b of a color in terms of three colored
lights, if the color falls within the color gamut of the
mathematical color solid.

It is also possible to define a unit plane within the
three-dimensional mathematical color solid which has
within it all colors with the same luminance. This unit
plane is a plane of constant luminance in the three-
dimensional mathematical color space and is similar to
the plane of constant value in the Munsell color solid.
Differences in colors within this plane are a function
of hue and chroma of the specified colors. This unit
planc is called a chromaticity diagram and a color point
within the chromaticity diagram is not specified by the
arbitrary tristimulus values R, G, and B but by fractions
of their total:

R
po— (12.4)
R+G+B
G
- 125
T R1Gc+B (12.5)
B
b= — 2 (12.6)
R+G+B

A color may be therefore specified in the three-
dimensional color by description of the luminance (/)
and two of the color’s three chromaticity coordinates.
This will be illustrated in the next section (Fig. 12.4)
for the CIExyz tristimulus system. This simple three-
light system is the basis for all mathematical color
solids like the CIE tristimulus system. However, this
simple system does not work in reality because (1)
some colors are outside the color gamut and a ncga-
tive amount of radiant flux is needed to match these
colors, (2) the color solid is not visually uniform, (3)
a vector analysis is needed to calculate the luminance.
The CIE system climinates all of these problems.

12.5.2.2 CIE Mathematical Color Systems

In the CIE mathematical color system theoretical pri-
marics were developed to remove the disadvantages
of the actual lights (R, G, and B) while still retaining
the advantages of the simple three-light system. The
primaries are X, Y, and Z and their chromaticity coor-
dinates are ., y, and z. The developers mathematically
included luminance into one of the primaries (Y) and
thus avoided the problem of needing vector analysis
to calculate luminance. This was possible because the
cones of the eyes are most sensitive to luminance in the
green region of the spectrum. Careful choice allowed
the theoretical primaries X, Y, and Z to cover the entire
color gamut with positive values, thus the horseshoe-
shaped CIE spectrum locus has a color gamut that
includes all colors (Fig. 12.4).

In the CIE system it is possible to locate a color
in the three-dimensional color space by specifying Y
and two of the three possible chromaticity coordinates
(x, ¥, and z). The chromaticity coordinates are related
to each other by the following equation: x+y+z = 1.
Thus, knowledge of two of the three possible values
will define a specific color.

The CIE data are usually expressed as tristimulus
values (X, Y, and Z) or as chromaticity coordinates
(x, y, and 7). The x, y chromaticity coordinates are
often plotted on the horseshoe-shaped CIE spectrum
locus with %Y superimposed (Fig. 12.5, please note
that not all colors are present at all levels of %Y). The
color can then be specified as x, y, and %Y. Since
CIE spectrum locus is not based on Cartesian coor-
dinates, it is difficult to express mathematically and
even more difficult to explain to most people. One
attempt to simplify the CIE system plots the CIE spec-
trum locus at constant %Y. Then x and y chromaticity
coordinates, at a given Y value, appear on a unit
plane.

The problem with the x, y, z chromaticity system
is that the space looks like a horseshoe which makes
any linear relationship calculations between these val-
ues and say sensory scales very difficult. Other color
systems have been developed with more uniform dia-
grammatic representations of color spaces than the
horseshoe-shaped CIE space. Early versions of these
color spaces were the Gardner and the Hunter L,A,B
spaces (which were associated with specific instru-
ments) where the value (also known as the degree
of whiteness or blackness) is represented by L. The
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Fig. 12.4 Horseshoe-shaped chromaticity diagram (Reprinted with permission from Gernot Hoffman, University of Applied

Sciences, Emden, Germany).

chromatic portion of the color space is based on
rectangular Cartesian coordinates (a, b) with red rep-
resented by +a, green represented by —a, yellow rep-
resented by +b, and blue represented by —b. These
systems made it easier to meaningfully communicate
color data. Subsequently other spaces that were instru-
ment invariant, like the CIELAB and CIELUYV, also
known as the L*a*b* and L*u*v*, respectively, were
developed by CIE to improve the linearity of the CIE
system (CIE, 1986). The L*u*v* system has been
applied to food but was primarily devised for color
additive mixing such as television and lighting. The
L*a*b* space approximates the Munsell space. For
both the L*u*v* and L*a*b* systems the three axes are
mutually perpendicular. An increase in the value of +a
indicates an increase in red; a larger —a value indicates
an increase in green. An increase in +b indicates an
increase in yellow and an increase in —b indicates an
increase in blue. Increasing L* values indicate increas-
ing lightness (or whiteness). One has to be careful not
to oversimplify the space—this occurs when authors
incorrectly describe a as redness and b as yellow-
ness. In actuality (a b) are Cartesian coordinates that

together describe a point in space (Hutchings, 1999;
Wrolstad et al., 2005).

In an effort to make the color coordinate values
more intuitive the L*C*h* color space was devised
(Sharma, 2003). This space uses the same diagram
as the L*a*b* color space but uses angles rather than
Cartesian coordinates for @ and b. The L* in L*C*h*
is identical to the L* in the L*a*b*. The C* indicates
chroma (an indication of color saturation) and is equal
to zero at the center of the color space and increases
based on the distance from the center. The h* is the
hue angle and it is expressed in degrees. Starting from
the +a* axis, 0° is +a (red), 90° is +b (yellow), 180° is
—a (green), and 270° is —b (blue).

The above color systems are helpful in specifying a
color but are not very useful when one wants to spec-
ify the differences between colors. Color difference
can be calculated in the L*a*b*, the L*u*v*, and the
L*C*h* systems. For the L*a*b* the equation for color
difference between two samples is as follows:

AE* = /(L) — 12)? + (a1 — a2)* + (by — by)?
(12.7)
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It is important to note that once the AFE is calculated
the size of the difference is known but not whether it is
due to L, a, b singly or in some combinations (Sharma,
2003). Because the L, a, b space is not uniform the
AE is more accurate in some parts of the color space
than others. In an attempt to improve the situation a
number of other color difference equations have been
proposed. The most popular are the CIE94 (also known
as AFEy4, CIE 1995b) and the CIEDE2000 (Luo et al.,
2001; Sharma et al., 2005). The CIEDE2000 has been
extensively studied and seems to be an improvement
over the standard AE and CIE94 (Melgosa et al., 2008;
Xu et al., 2002).

There are also mathematical color systems that
may be less familiar to North American read-
ers but very familiar to others, for example, the
Swedish Natural Color System (NCS, Hard and Sivik,
1981), the DIN99 (Cui et al., 2002), and the CMC

0.5 0.6 0.7 0.8

09 x 1.0

color exists at 0 where the white point is equal to CIE illuminant
C. As the Y value increases and the color becomes lighter, the
range of color, or gamut, decreases so that the color space at 1
is just a sliver of the original area (Reprinted with permission
from Gernot Hoffman, University of Applied Sciences, Emden,
Germany).

(AATCC, 2005). Fortunately, values derived from any
of these systems can be interconverted, provided con-
ditions are appropriately specified. A few examples
of color conversion tables and equations are listed in
Table 12.3.

Interconversion between color systems can have
problems. In food matrices there are frequently dis-
crepancies when converting from the other systems to
the CIE XYZ system, because the conversion calcula-
tions are based on the responses of opaque standards.
Food systems, on the other hand, are often somewhat
translucent and do not behave exactly as would be
predicted by the standards.

Angela Little (MacKinney and Little, 1962) stated
“Once we accept that color belongs to the realm of sen-
sory perception, we must also accept that is can only
be measured directly in psychological terms. From
physical measurements, nevertheless, we can obtain
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Table 12.3 Conversion equations and tables for some common color systems

Convert CIE XYZ to CIELUV L*u*v*?

L* = 116(Y/Y,)"3 — 16 for Y/Y,, >0.008856 where Y, is the value for reference white

L* = 903.3(Y/Y,)'3 for ¥/ Y, < 0.008856 where Y, is the value for reference white

u* = 13L*(u—uwsy,) where w is calculated as described below and w/,, is for reference white
v* = 13L*(v—vr,) where v/ is calculated as described below and vz, is for reference white

Calculation of u/ and vr:
w = (AX)/(X+15Y+3Z) = (4x)/(~2x+12y+3)
v = ONIX+15Y+3Z) = (9y)/(=2x+12y+3)
Convert CIE XYZ to CIELAB L*a*b*®

L* = 116(Y/Y,)'53 for YIY, >0.008856 where Y, is the value for reference white
a* = 500{(X/X,)"3 — (YIY,))/3} where X,, is the value for reference white
b* =200 {(Y/Y,,)”3 —(ZZHV 3} where Z, is the value for reference white

Convert CIELAB L*a*b* to CIE XYZ°
Y3 = (L* + 16)/24.99 if illuminant C was used
X%'3 = (a*/107.72) + YV if illuminant C was used
Z%'3 = Y3 _ (b*/43.09) if illuminant C was used
Convert CIELAB L*a*b* to HunterLAB®

1
L = 10Y” if illuminant C was used
1
a = 17(X%-Y)/Y 2 if illuminant C was used

1
b = 7.0(Y-Z%)!Y % if illuminant C was used
Convert CIE XYZ to HunterLABY

1
L=10Y%
1
a=175(1.02X-N)/(Y 2)
1
b = 70(Y-0.8472)/(Y 2)
Convert Munsell values to CIE XYZ
Use tables by Glenn and Killian (1940)

Convert Munsell values to CIE xy
Use tables by Glenn and Killian (1940)

4Hutchings (1999) (CIELUV was intended for color additive mixing in the television and lighting industries, but it has been used

in food color measurements)
PASTM (1991)

CPattee et al. (1991)
dClydesdale (1978)

data which provide the basis for establishing psy-
chophysical scales, from which we can predict visual
color appearance.” She suggests that usually the pri-
mary concern in color measurement is to measure what
the eyes see. Thus it is necessary to produce data
that correlate with human visual perception. Often the
instrumental data (tristimulus values) do not correlate
well with the data derived from panelists and further
manipulation of the instrumental data may be needed
to improve the correlation.

When the color of foods is measured instrumentally
the scientist should keep in mind that the instrument
was designed to measure the reflectance color of ideal
samples, namely samples that are homogeneously
pigmented, opaque, flat, and evenly light scattering
(Clydesdale, 1975, 1978). Foods are far from the ideal

sample. Nearly all foods have shape and texture irreg-
ularities and surface characteristics that scatter and
transmit light. Additionally, the pigment distribution
in most foods is also irregular. Instruments are also
designed to measure the transmittance color of ideal
samples, and in this case the ideal sample is clear
and moderately light absorbing. Real liquids (where
one usually measures transmittance color) tend to have
hazes and may be very light absorbing (Clydesdale,
1978).

It is possible to obtain an approximate ideal
reflectance color measuring surface for dry powders,
such as flour and cocoa, by compressing the dry pow-
dered sample into a pellet. Other dry foods such as
instant coffee, potato flakes, dry gelatin crystals (dry
Jell-O®) can be pressed into very thin wafers between
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Teflon disks. When measuring the color of translucent
liquids the area exposed should be much larger than
the area illuminated. This allows any light entering
the sample and traveling laterally within the sample
to emerge in the direction where it will be measured.
This minimizes the selective absorption effect that
can change the hue of the liquid (see above under
translucency).

12.6 Conclusions

Sensory color measurement is frequently neglected by
sensory specialists or they add this measurement as an
afterthought. We hope that this chapter has made the
reader realize that the measurement of color, whether
visually or by instrument, is no simple task. The sen-
sory specialist should be very careful to standardize
all possible conditions associated with these measure-
ments and to carcfully report the specific conditions
used in a test. Additionally, it is important to realize
that most (if not all) visual and appearance charac-
teristics can be evaluated using standard descriptive
analysis techniques.
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