## Lecture-5

# EMR Inter action with Atmosphere Mr.Prafulla Kumar Panda Assistant Professor



Contact:9438269572

E-mail: prafullapanda@cutm.ac.in

## EMR Inter action with Atmosphere



EMR interacts with atmosphere both during onward and retreat transit

#### **Atmosphere contains**

- **≻**Gases
- >Suspended materials
- >Water molecules

## These atmospheric impurities causes

- >Atmospheric scattering
- ➤ Atmospheric absorption

### These two depends upon

- >Path length
- >Transmissivity of atmosphere

## a. Path Length

- Distance traveled by EMR in atmosphere
- **❖** EMR has travelled twice
- But earth emitted energy has travelled <u>only once</u>
- Path length is a function of
  - ✓ Location of energy sources
  - ✓ Altitude of plat form

## b. Transmissivity of the atmosphere

- ❖ Is the efficiency of the atmosphere to transmit light
  - > It depends upon wave length
  - 'T' is a measure fraction of radiance emenated from  ${}_{\scriptscriptstyle{6/12/2020}} ground$

## Atmospheric absorption

- 1. When EMR passes through atmosphere it is selectively absorbed by
- > GASES
- > Water molecules
- > Other dust particles

#### Due to

- > Rotational
- **≻** Vibratioal
- > Electronic energy levels

$$\begin{pmatrix}
H_2O \\
CO_2 \\
O_3
\end{pmatrix}$$

- 2. When EMR falls on such particles the photons available in them are energised and as a result they absorb light
- This is called "atmospheric absorption"

#### **3.Atmosperic Windows**

- ➤ In between UV and microwave region only certain selected wave length are observed
- ➤ Such spectral zone of least is called atmospheric windows

#### **Atmospheric Windows**

#### Name

1.UV/Visible

2.Near IR

3.SWIR

4.Middle IR

#### wave length

0.3-.75 micrometer

0.77-0.90

## Atmospheric scattering

#### i. Diffuse multiple reflection of EMR by atmosphere



#### ii. Types of Scattering

#### a. Rayleigh(Molecular)

When the light hits tiny particles whose diameter is less the wave length of light Raleigh scattering take place

 $R \alpha 1/\lambda^4$ 

- ➤ More sever in UV and blue region
- ➤ This is the reason for blue colour in sky
- > Cause blue haze in imagery

#### b. Mie Scattering(Non molecular)

- ➤ When atmospheric particles are spherical and larger than the wave length of EMR then Mie scattering
  - ❖ Due to the dust and vapour
  - **❖**Scatters UV to IR
  - This is causes reddishness in Sky

#### C.Non selective scattering

- Due to largest particle size (5 to 100 micrometer) all light from UV to MIR will be uniformly scattered
- > Cloud white
- > Rain bow

#### III. Atmospheric luminance

- ➤ It is defined as luminant flux incident on an unit area
- ➤ This is also affects the EMR
- ➤ As the final light reaching the ground is the sum of
  - Direct sunlight +
  - Moon light+
  - Atmospheric luminance caused by scattered light
- ➤ But the atmospheric luminance caused by scattered light

## EMR interaction with earth surface Features

#### When sun light falls on it is

- Absorbed
- Diffracted
- Scattered
- Polarised
- Reflected

#### Depending upon

- > Size
- > Shape
- ➤ Surface roughness
- > Other physical properties of the earth surface

## Absorbtion

Absorption + Diffraction + Transmission

• If the medium homogeneous –simple transmission



Heterogeneous object- Internal scattering



- ➤ Absorption and transmission depends upon the dielectric constant
- The dielectric constant is the ratio of the <u>permittivity</u> of a substance to the permittivity of free space. It is an expression of the extent to which a material concentrates electric <u>flux</u>, and is the electrical equivalent of relative magnetic permeability.
- ❖ Dielectric constant depends upon
- ➤ Wave length of the light
- > Sp.gravity of the object
- > Cation, anion, and solid solution
- > Impurities, trace element
- ➤ Moisture content

Polarisation



Reflection



- Follows Snell's law
- Angle of incident= Angle of reflection



- In rough surface light will be scattered
- In Lambertian surface light will be reflected equally in all direction irrespective of angle of incidence

• Surface roughness is an important function in scattering