Remote sensing and Image Processing

Instructor: Prof.Prafulla Kumar Panda

Office: F-111

Phone: 9438269572

Email-prafullapanda@cutm.ac.in

Lecture-1 Introduction to Remote Sensing

(Definition ,history and development of Remote sensing)

Prafulla Kumar Panda Assistant Professor

Centurion University of Technology and Management Contact: 9438269572

E-mail: prafullapanda@cutm.ac.in

Introduction to Remote sensing

What is "Remote sensing"?

- Using artificial devices, rather than our eyes, to observe or measure things from a distance without disturbing the intervening medium
- Remote sensing is defined as the science which deals with obtaining information about objects on earth surface by analysis of data, received from a remote platform.

Introduction to Remote sensing

- "'reconnaissance from a distance," "teledetection," or a form of the common adage "look but don't touch"
- Remote sensing is the technique of deriving information about objects on the surface of the earth without physically coming into contact with them(NRSA-1995)
- Sensing of an object without having any physical touch.

Types of Remote sensing

- 1. Spectral Remote sensing
- 2.NonSpectral Remote sensing
- 1.Spectral Remote sensing
- a. Photographic Remote sensing
- b. Non photographic Remote sensing
- 2.NonSpectral Remote sensing
- a. Audio Sensing(Sound)
- b. Action Sensing
- c. Geophysical Sensing

Depending on the scope, remote sensing may be broken down into:

- * Satellite Remote sensing—when satellite platforms are used
- * Photography and photogrammetry—when photographs are used to capture visible light
- Thermal Remote sensing—when the thermal infrared portion of the spectrum is used
- * RADAR remote sensing—when microwave wavelengths are used
- ❖ LIDAR Remote sensing—when laser pulses are transmitted toward the ground and the distance between the sensor and the ground is measured based on the return time of each pulse

Historical prospective in Remote sensing

- **1.Ludwing Raharman** of Germany –First man to take Birds eye photographic view in 1881
- ➤ He has used rocket-Propelled camera system from parachute

2.AlFord Maul(1907)

Added the concept of Gyrostabilisation to rocket camera

➤ In 1912 he has sent a 41 kg pay load containing 200*250 mm format camera to a height of 790m.

3.1946-1950

Number of camera of different dimensions were put in V-2 rockets lunched from sand proving ground

4.In succeeding years:

Photographs were taken from

- Rockets
- Ballistic Missiles
- Satellites
- Manned spaced craft
 - Overall poor quality photographs
 - Mostly for the meteorological purposes

5.TIROS-1(Television Infrared Observation Satellite),(1960) Meteorological satellite

provided coarser vision of about cloud pattern

6.1960's

A.MERCURY MISSION

- (i). Alan B.shepard. (Jr.) in 1961 has made a sub orbital mercury flight taken 150 photographs (using Automatic Camera)
 - Sown only sky, cloud, ocean
- (ii) John Glenn Jr. (1962) took three orbits around the earth and took 48 colour photographs in mercury mission
 - ➤ Desert, cloud and water
 - ➤ In mercury flights colour reversal photographs were also taken using Hasselblad Cameras (80mm lenses)

B. Gemini Mission

First Gemini mission took overlapping photographs for geology

- Lead to new and scintillating discoveries in Tectonics, Volcanoes and Geomorphology
- ➤ 1100 High quality colour photographs were taken

C.Appolo program:

- Collected multispectral orbital photography
- Four camera array
- Eclectically driven
- > 70mm Hasselblad camera
- Photographs were produced using pan chromatic films with Green, Red, Black and white, IR film, colour IR film.

D.1973 SKY Lab:

- ➤ American Astronauts collected 35,000 images called EREP(Earth Resources Experiment Packages)
- ➤ Included 6 camera multispectral array
- Long focal length (Earth terrain camera)
- ➤ 13 channel multispectral scanner
- ➤ Pointate Spectro Radiometer
- > Two microwave systems

E.USSR Apollo- Soyu Z test project(ASTP)

➤ Hand held 35 and 70mm Camera

F.LANDSAT PROGRAM

Stared in 1967

(I)ERTS(Earth Resources Technology Satellites)-Satellites A,B,C,D,E,F

Latter called 1,2,3,4,5

- (ii)ERTS 1/LANDSAT:
 - ➤ Launched July 23,1972
 - ➤ Thor –Delta rocket
 - ➤ Platform NIMBUS Weather satellite
 - > Four band 4,5,6,7

Landsat: America's most successful Unmanned Satellites

iii.LANDSAT-2

➤ Jan 1975

➤ 4bands of MSS AND RBV

IV.LANDSAT-3 MARCH

1978

Same as LAND SAT 2

V.LANDSAT 4 AND 5

>JULY 1982 and MARCH

1984

➤ MSS and TM Band

Indian remote sensing programmes

i.ARYABHAT MISSION

Launch 19th April 1975

II.PSLV LAUNCHING

III.SLV3 & ROHINI

IV.ASLV&SROSS

➤ AUGUMENTED SATELLITE LAUNCHING VECHICLE&STRECTHED ROHINI SERIES OF SATELLITE

V.BHASKRA SATELLITE-launched in 1979

VI.APPLE(ARIANE PASENGER PAYLOAD EXPERIMENT)

VII.IRS MISSION

- ➤ IRS1A-17MARCH 1988
- > IRS1 B

Other missions

- (a)Heat Capacity Mapping Mission(H.C.M.M)
- ➤ Heat capacity mapping radiometer(H.C.M.R)
- > Two bands
 - 0.5-1.1micrometers
 - 10.5-12.5 micrometers

(b)SEASAT

- ➤ 26 June 1978
- Failed on 10.10.1978
- ➤ Radar Altimeter
- Synthetic Aperture Radar(SAR)
- ➤ Wind Sctterometer
- Scanning multichannel microwave radiometer(SMMR)

C. Nimbus 1 1964-08-28

Nimbus 2 1966-05-15

Nimbus 3 1969-04-14

Nimbus 4 1970-04-08

Nimbus 5 1972-12-11

Nimbus 6 1975-06-12

NIBUS -7

- **≥**24 October 1978
- ≽6 Bands
- **≻**Costal
- ➤ Ocean studies
- >Atmospheric studies

SPOT(Système Pour l'Observation de la Terre) MISSION

a.SPOT-1

- > Feb'1987
- > HRV Camera
- ➤ 10m-PAN
- ➤ 30m multispectral
- ➤ 3 spectral bands

NOAA

- By National OceanicAtmospheric Administration
- > Has four instruments
 - **❖** AVHR(5Cahannels)
 - ❖ TIROS (Television Infrared Observation Satellite)
 - Operational Vertical Sounder(TOVS)
 - ❖ Data Collecting system (DCS)
 - Space Environment Monitor(SEM)