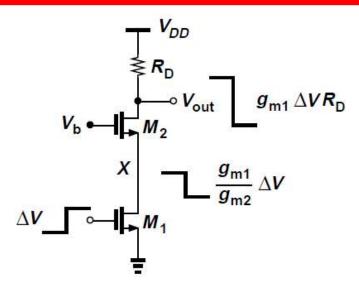
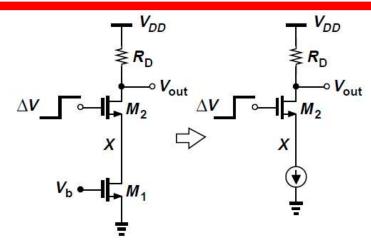
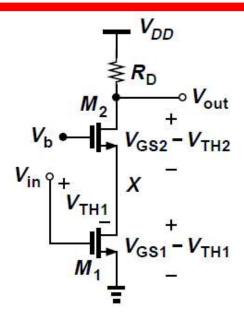

Cascode Stage


• The cascade of a CS stage and a CG stage is called a

cascode topology


- M_1 generates a small-signal drain current proportional to the small-signal input V_{in} and M_2 simply routes the current to R_D
- M_1 is called the input device and M_2 the cascode device
- M_1 and M_2 in this example carry equal bias and signal currents
 - Topology also called as "telescopic cascode"

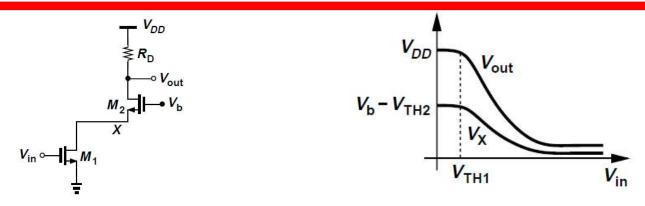
Cascode Stage: Qualitative Analysis


- Assume both transistors are in saturation and $\lambda = y = 0$
- If V_{in} rises by ΔV , then I_{D1} increases by $g_{m1}\Delta V$
- This change in current flows through the impedance seen at X, i.e., the impedance seen at the source of M_2 , which is equal to $1/g_{m2}$
- Thus, V_X falls by an amount given by $g_{m1}\Delta V \cdot (1/g_{m2})$
- This change in I_{D1} also flows through R_D , producing a drop of $g_{m1}\Delta VR_D$ in V_{out} , just as in a simple CS stage

Cascode Stage: Qualitative Analysis

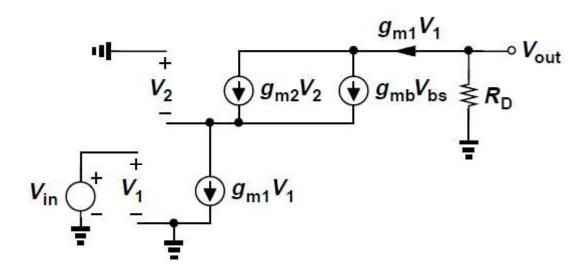
- Consider the case when V_{in} is fixed and V_b increases by ΔV
- Since V_{GS1} is constant and $r_{O1} = \infty$, M_1 can be replaced by an ideal current source
- For node X, M_2 operates as a source follower, it senses an input ΔV at its gate and generates an output at X
- With $\lambda = y = 0$, the small-signal voltage of the follower is unity regardless of R_D
- V_X rises by ΔV , but V_{out} does not change since $I_{D_2} = I_{D_1} = constant$, thus voltage gain from V_b to V_{out} is zero opyright 2017 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Cascode Stage: Bias Conditions



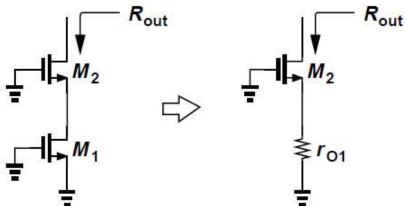
- For M_{τ} to operate in saturation, we must have $V_X \geq V_{in} - V_{TH1}$
- If M_1 and M_2 are both in saturation, M_2 operates as a source follower and V_{\bullet} is primarily determined by V_{\bullet} : $V_{X} = V_{b} - V_{GS2}$ $V_{GS1} - V_{TH1}$ $V_{GS1} - V_{TH1}$ $V_{GS2} - V_{TH1}$ $V_{b} > V_{in} + V_{GS2} - V_{TH1}$ and hence
- For M_2 to be saturated, $V_{out} \geq V_b V_{TH2}$
- $V_{out} \geq V_{in} V_{TH1} + V_{GS2} V_{TH2}$ • Thus, $= (V_{GS1} - V_{TH1}) + (V_{GS2} - V_{TH2})$

if V_n is chosen to place M_1 at the edge of saturation


- Minimum output level for which both transistors are in saturation is equal to the sum of overdrives of M_1 and M_2
- Addition of M_2 to the circuit reduces the output voltage swing by at least its overdrive voltage
 Copyright © 2017 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

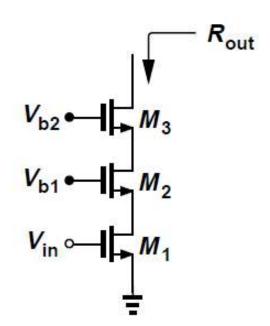
Cascode Stage: Large-Signal Behavior

- For $V_{in} \le V_{TH1}$, M_1 and M_2 are off, $V_{out} = V_{DD}$, and $V_X \approx V_b V_{TH2}$
- As V_{in} exceeds V_{TH1} , M_1 draws current, and V_{out} drops
- Since I_{D2} increases, V_{GS2} must increase as well, causing V_X to fall
- As V_{in} becomes sufficiently large, two effects can occur:
 - V_X falls below V_{in} by V_{TH1} , forcing M_1 into the triode region
 - V_{out} drops below V_b by V_{TH2} , driving M_2 into triode region
- Depending on device dimensions and R_D and V_b , one


Characteristics

- Assume both transistors operate in saturation and $\lambda=0$
- Voltage gain is equal to that of a common-source stage because the drain current produced by the input device must flow through the cascode device
- This result is independent of the transconductance and body effect of M_2 , the cascode device
- Can be verified using $A_v = -G_m R_{out}$

Cascode Stage: Output Impedance

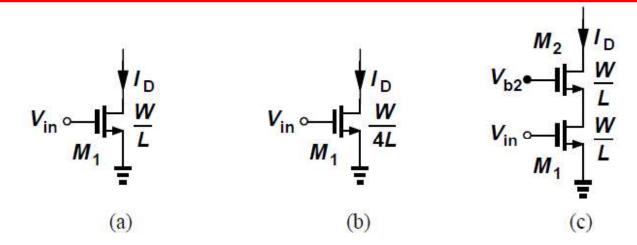

 Important property of the cascode structure is its high output impedance

- For calculation of R_{out} , the circuit can be viewed as a common-source stage with a degeneration resistor equal to r_{01}
- Thus, $R_{out}=[1+(g_{m2}+g_{mb2})r_{O2}]r_{O1}+r_{O2}$ Assuming $g_{m}r_{o}>>$ 1, we have $R_{out}\approx(g_{m2}+g_{mb2})r_{O2}r_{O1}$
- M2 boosts the output impedance of M1 by a factor of $(g_{m2}+g_{mb2})r_{O2}$

Triple Cascode

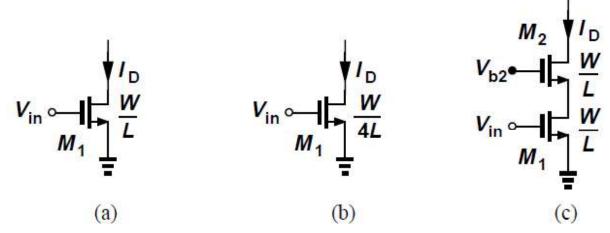
- Cascoding can be extended to three or more stacked devices to achieve higher output impedance
- But required additional voltage headroom makes it less attractive
- For a triple cascode, the minimum output voltage is equal to the sum of three overdrive voltages

Cascode stage with current source load


- Voltage gain can be maximized by maximizing G_m and/or R_{out}
- Since G_m is typically determined by the transconductance of a transistor and has trade-offs with the bias current and device capacitances, it is desirable to increase voltage gain by maximizing R

$$V_{DD}$$
 V_{DD}
 V_{1}
 V_{out}
 $V_{in} \sim M_{1}$

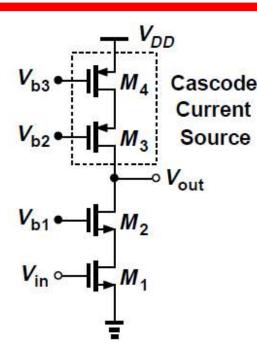
$$R_{out} \approx (g_{m2} + g_{mb2})r_{O2}r_{O1}$$


$$G_m \approx g_{m1}$$
 $R_{out} \approx (g_{m2} + g_{mb2})r_{O2}r_{O1}$
 $A_v = (g_{m2} + g_{mb2})r_{O2}g_{m1}r_{O1}$

Cascode Stage vs Increasing Length

- Increasing length of the input transistor for a given bias current increases the output impedance
- Suppose the length of the input transistor is quadrupled while the width remains constant
- Since $I_D=(1/2)\mu_n C_{ox}(W/L)(V_{GS}-V_{TH})^2$, the overdrive voltage is doubled and the transistor consumes the same amount of voltage headroom as does a cascode stage, i.e., circuits in (b) and (c) impose equal voltage swing constraints

Cascode Stage vs Increasing Length



Since

$$g_m r_O = \sqrt{2\mu_n C_{ox} \frac{W}{L} I_D} \frac{1}{\lambda I_D}$$

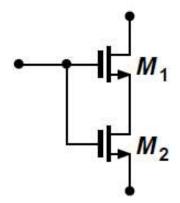
- And $\lambda \propto 1/L$, quadrupling L only doubles the value of $g_m r_o$ while cascoding results in an output impedance of roughly $g_m r_0^2$
- Transconductance of M_{τ} in (b) is only half of that in (c), degrading the performance
- For a given voltage headroom, the cascode structure provides a higher output impedance
 Copyright © 2017 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Cascode Structure as Current Source

- High output impedance of cascode structure yields a current source clc the ideal, but at the cost of voltage headroom structure yields a current source closer to
 - The current source load in a cascode stage can be implemented as a PMOS cascode, exhibiting an impedance equal to

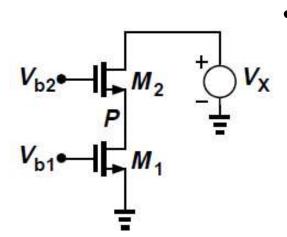
$$[1 + (g_{m3} + g_{mb3})r_{O3}]r_{O4} + r_{O3}$$

- To find the voltage gain, $G_m \approx g_{m_1}$
- Rout is the parallel combination of the NMOS and PMOS cascode output impedances


$$R_{out} = \{ [1 + (g_{m2} + g_{mb2})r_{O2}]r_{O1} + r_{O2} \} | \{ [1 + (g_{m3} + g_{mb3})r_{O3}]r_{O4} + r_{O3} \}$$

- The gain is given by $|A_v| pprox g_{m1} R_{out}$
- For typical values, this is approximated as

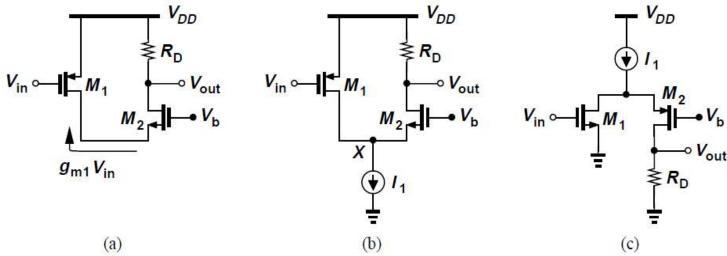
$$|A_v| \approx g_{m1}[(g_{m2}r_{O2}r_{O1})||(g_{m3}r_{O3}r_{O4})]$$


Poor Man's Cascode

 A "minimalist" cascode current source omits the bias voltage necessary for the cascode device

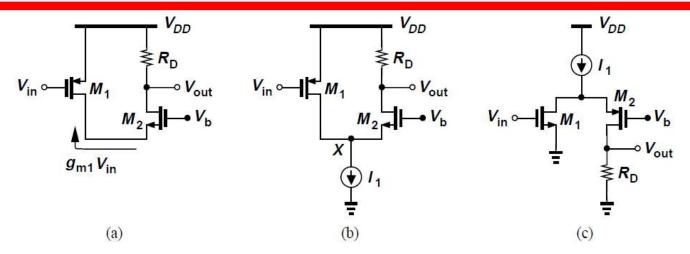
- Called "poor man's cascode", M_2 is placed in the triode region because $V_{GS1} > V_{TH1}$ and $V_{DS2} = V_{GS2} V_{GS1} < V_{GS2} V_{TH2}$
- If M_1 and M_2 have the same dimensions, the structure is equivalent to a single transistor having twice the length-not really a cascode
- In modern CMOS technologies, transistors with different threshold voltages are allowable, allowing M_2 to operate in saturation if M_1 has a lower threshold than M_2

Poor Man's Cascode: Shielding Property

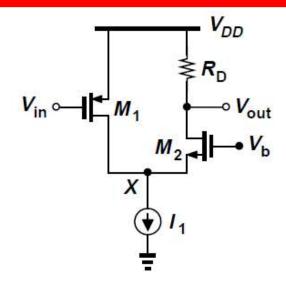

- High output impedance arises from the fact V_{b2} M_2 V_X the resulting change at the source of the cascode device is much less — Cascode transistor "shields" the input that if the output node voltage is changed by ΔV , the resulting change at the source of
 - device from voltage variations at the output
 - Shielding property diminishes if cascode device enters triode region
 - In above circuit, as V_x falls below V_{b2} - V_{TH2} , M_2 enters triode region and requires a greater gate-source overdrive to sustain the current drawn by M_{\star} therefore

$$I_{D2} = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L} \right)_2 \left[2(V_{b2} - V_P - V_{TH2})(V_X - V_P) - (V_X - V_P)^2 \right]$$

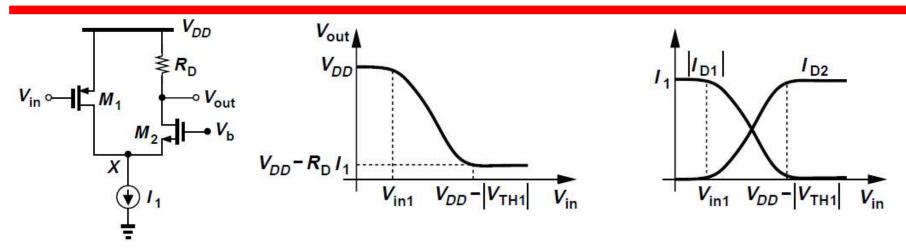
• As V_X decreases, V_P also drops to keep I_{D2} constant so


Folded Cascode

 The input device and the cascode device in a cascode structure need not be of the same type


- In the figure above, (a) shows a PMOS-NMOS cascode combination that performs the same function as a telescopic cascode
- In order to bias M_1 and M_2 , a current source must be added as shown in (b)
- $|I_{D1}| + I_{D2}$ is equal to I_1 and hence constant
- (c) shows an NMOS-PMOS folded cascode

Folded Cascode: Small-signal operation

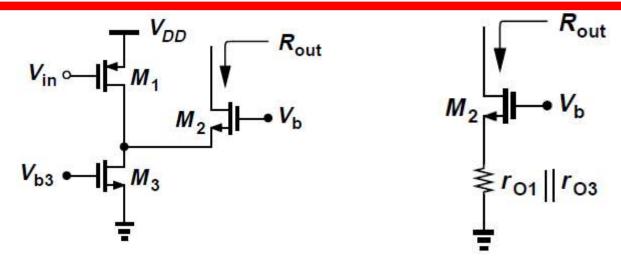

- If V_{in} becomes more positive, $|I_{D1}|$ decreases, forcing I_{D2} to increase and hence V_{out} to drop
- The voltage gain and output impedance can be obtained as calculated for the NMOS-NMOS cascode shown earlier
- (b) and (c) are called "folded cascode" stages because the small-signal current is "folded" up [in (b)] or down [in (c)]
- In the telescopic cascode, the bias current is reused whereas those of M_1 and M_2 add up to I_1 in (b) and (c), leading to a higher bias current

Folded Cascode: Large-signal operation

- Suppose V_{in} decreases from V_{DD} to zero
- For $V_{in} > V_{DD}$ - $|V_{TH1}|$, M_1 is off and M_2 carries all of I_1 , yielding $V_{out} = V_{DD} I_1 R_D$
- For V_{in} < V_{DD} $IV_{Tut}I$. M_{\star} turns on in saturation, giving $I_{D2} = I_1 \frac{1}{2}\mu_p C_{ox} \left(\frac{W}{L}\right)_1 (V_{DD} V_{in} |V_{TH1}|)^2.$
- As V_{in} drops, I_{D2} decreases further, falling to zero if $I_{D1}=I_1$

Folded Cascode: Large-signal operation

• This occurs at $V_{in} = V_{in1}$ if

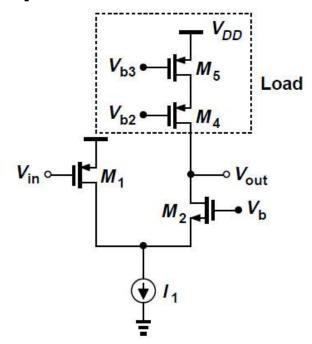

$$\frac{1}{2}\mu_p C_{ox} \left(\frac{W}{L}\right)_1 (V_{DD} - V_{in1} - |V_{TH1}|)^2 = I_1$$

• Thus,

$$V_{in1} = V_{DD} - \sqrt{\frac{2I_1}{\mu_p C_{ox}(W/L)_1}} - |V_{TH1}|$$

- If V_{in} falls below this level, I_{D1} tends to be greater than I_1 and M_1 enters the triode region to ensure $I_{D1}=I_1$
- As I_{D2} drops, V_X rises, reaching V_b - V_{TH2} for I_{D2} =0
- As M_1 enters the triode region, V_X approaches V_{DD}

Folded Cascode: Output Impedance


- M_3 operates as the bias current source
- Using earlier results,

$$R_{out} = [1 + (g_{m2} + g_{mb2})r_{O2}](r_{O1}||r_{O3}) + r_{O2}$$

 The circuit exhibits a lower output impedance than a nonfolded (telescopic) cascode

Folded Cascode with cascode load

 To achieve a high voltage gain, the load of a folded cascode can be implemented as a cascode itself

- Increasing the output resistance of voltage amplifiers to obtain a high gain may make the speed of the circuit susceptible to the load capacitance
- A high output impedance itself does not pose a serious issue if the amplifier is placed in a proper feedback loop