

- If V_{DS} << 2(V_{GS} - V_{TH}), the device is operating in "deep triode region."
- In this region, a MOSFET can operate as a resistor whose value is controlled by the overdrive voltage.
- Unlike bipolar transistors, a MOS device may be on even if it carries no current.

 For example, given the topology on the left and that

$$\mu_n C_{ox} = 50 \, \mu \text{A/V}^2$$

$$-W/L = 10$$

-
$$V_{TH} = 0.3 \text{ V}$$
,

$$R_{on} = \frac{1}{50 \,\mu\text{A/V}^2 \times 10(V_G - 1 \text{ V} - 0.3 \text{ V})}.$$

- In reality, if $V_{DS} > V_{GS} V_{TH}$, I_D becomes relatively constant and we say that the device operates in "saturation region."
- $V_{D,sat} = V_{GS} V_{TH}$ denotes the minimum V_{DS} necessary for operation in saturation.

- If V_{DS} is slightly larger than $V_{GS}-V_{TH}$, the inversion layer stops at $x \le L$, and the channel becomes "pinched off."
- As V_{DS} increases, the point at which Q_{D} equals zero gradually moves towards the source.
- At some point along the channel, the local potential difference between the gate and the oxide-silicon interface is not sufficient to support an inversion layer.

• Electron velocity ($v = I/Q_d$) rises tremendously as they approach the pinch-off point (where $Q_d \rightarrow 0$) and shoot through the depletion region near the drain junction and arrive at the drain terminal.

$$V_{GS} = \sqrt{\frac{2I_D}{\mu_n C_{ox} \frac{W}{L'}}} + V_{TH}$$

Since the integral becomes

$$- \int_{x=0}^{x=x_2=L'} I_D dx = \int_{V=0}^{V=V_{GS}-V_{TH}} W C_{ox} \mu_n [V_{GS}-V(x)-V_{TH}] dV .$$

$$I_D = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L'}\right) (V_{GS}-V_{TH})^2 .$$

- I_D is relatively independent of V_{DS} if L' remains close to L.
- The device exhibits a "square-law" behavior.

For PMOS devices, the equations become

$$I_D = -\mu_p C_{ox} \frac{W}{L} \left[(V_{GS} - V_{TH}) V_{DS} - \frac{1}{2} V_{DS}^2 \right].$$

$$I_D = -\frac{1}{2} \mu_p C_{ox} \frac{W}{L'} (V_{GS} - V_{TH})^2.$$

- The negative sign shows up due to the assumption that drain current flows from drain to source, whereas holes in a PMOS flow in the reverse direction.
- V_{GS} , V_{DS} , V_{TH} , and $V_{GS}-V_{TH}$ are negative for a PMOS transistor that is turned on.
- Since the mobility of holes is about ½ the mobility of electrons, PMOS devices suffer from lower "current drive" capability.

- A saturated MOSFET can be used as a current source connected between the drain and the source.
- NMOS current sources inject current into ground while PMOS current sources draws current from $V_{\rm DD}$.

- $V_{DS} = V_{GS} V_{TH} = V_{D,sat}$ is the line between saturation and triode region.
- For a given V_{DS} , the device eventually leaves saturation as V_{GS} increases.
- The drain is defined as the terminal with a higher (lower) voltage than the source for an NMOS (PMOS).

$$g_{m} = \frac{\partial I_{D}}{\partial V_{GS}}\Big|_{V \mid DS \text{ const.}} = \mu_{n}C_{ox}\frac{W}{L}(V_{GS} - V_{TH})$$
$$= \sqrt{2\mu_{n}C_{ox}\frac{W}{L}I_{D}} = \frac{2I_{D}}{V_{GS} - V_{TH}}.$$

- Transconductance (usually defined in the saturation region) is defined as the change in drain current divided by the change in the gatesource voltage.
- g_m represents the sensitivity of the device since a high value implies a small change in V_{gs} will result in a large change in I_p .
- Transconductance in saturation region is equal to the inverse of R_{on} in the deep triode region.

- Each expression for transconductance is useful in studying its behavior.
- Drain current and overdrive voltage are *bias* values.
- If a small signal is applied to a device with defined bias values, we assume the signal amplitude is small enough that the variation in transconductance is negligible.

- To find the transconductance for the topology on the left with respect to $V_{\rm DS}$,
 - So long as $V_{DS} \ge V_b V_{TH}$, M_1 is in saturation, so I_D is relatively constant, and therefore so is g_m .
 - When M₁ enters triode region

For PMOS,

$$g_m = -\mu_p C_{ox}(W/L)(V_{GS} - V_{TH})$$
$$= -2I_D/(V_{GS} - V_{TH})$$
$$= \sqrt{2\mu_p C_{ox}(W/L)I_D}.$$