SOC SYSTEM INTERCONNECT

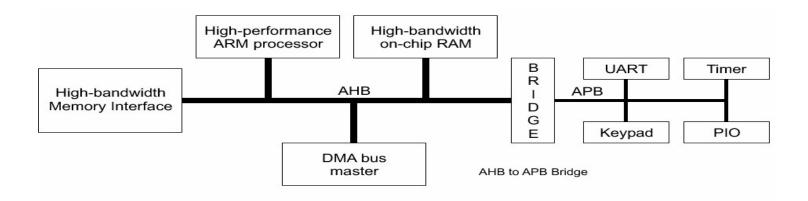
System Interconnection

- Tri-state bus is not good
 - Bus contention problem
 - Reduce reliability
 - One and only one driver at a time
 - Harder for deep submicron design
 - Bus floating problem
 - Reduce reliability
 - Bus keeper
 - ATPG problem
 - FPGA prototyping problem
- Multiplexer-based bus is better

IP-TO-IP INTERFACE

- Direct connection (via FIFO)
 - Higher bandwidth
 - Redesign for different IP
 - Become unmanageable when the IP number increases
 - Only suitable for design connected to analog block, e.g.
 PHY

Bus-based


- Eliminate direct link
- Layered approach can offer higher bandwidth
- All IPs talk to bus only, thus only IP-to-bus problem
- The mainstream of current IP-based SOC integration
- Choose the standard bus whenever possible

ON-CHIP BUS (OCB)

ARM AMBA

- Advanced Microcontroller Bus Architecture
- Dominant player
- V 3.0 is on the road
- Available solution
 - Synopsys DW_AMBA, ...
- Sonics OCP
- VSIA OCB 2.1
- WishBone Silicore
- IBM CoreConnect

AMBA BUS SYSTEM

AMBA Advanced High-performance Bus (AHB)

- * High performance
- * Pipelined operation
- * Burst transfers
- * Multiple bus masters
- * Split transactions

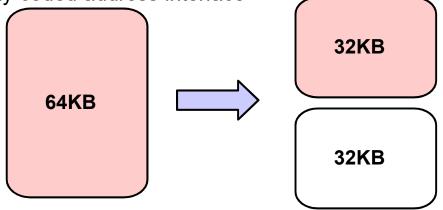
AMBA Advanced Peripheral Bus (APB)

- * Low power
- * Latched address and control
- * Simple interface
- * Suitable for many peripherals

DESIGN FOR DEBUG: ON-CHIP DEBUG

- Experienced teams assume chip won't work when first power up and plan accordingly.
- Challenges for IP test
 - IPs are deeply embedded within the SOC design
 - Disaster to the system and S/W engineers
- Solution
 - Principle: increase controllability and observability
 - Add debug support logic to the hardware
 - MUX bus to existing I/O pins

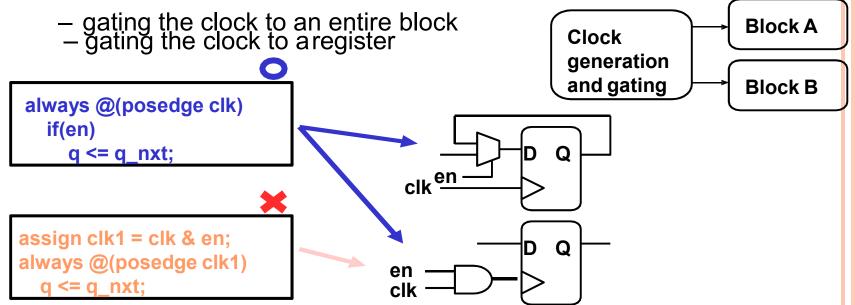
Low Power (1/3)


 $P = \sum \alpha C V^2 f$

 α : switching activity, C : capacitance, V : supply voltage, f : frequency

- Reduce the supply voltage
 - Process improvement
- Reduce capacitance
 - Low power cell and I/O library
 - Less logic for the same performance
- Reduce switching activity
 - Architecture and RTL exploration
 - Power-driven synthesis
 - Gate-level power optimization

LOW POWER (2/3)


- Memory
 - Dominated power consumption
 - Low-power memory circuit design
 - Partition a large memory into several small blocks
 - Gray-coded address interface

LOW POWER (3/3)

Clock gating

- 50% - 70% power consumed in clock network reported

DESIGN FOR TEST

- Memory test
 - Memory BIST is recommended
- Processor test
 - Chip level test controller (including scan chain controller and JTAG controller)
 - Use shadow registers to facilitate full-scan testing of boundary logic
- Other macros
 - Full scan is strongly recommended
- Logic BIST
 - Embedded stimulus generator and response checker
 - Not popular yet