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Input Pattern Effects on DelayInput Pattern Effects on Delay

 Delay is dependent on 
the pattern of inputs

 Low to high transition
 both inputs go low
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 both inputs go low
– delay is 0.69 Rp/2 CL

 one input goes low
– delay is 0.69 Rp CL

 High to low transition
 both inputs go high

– delay is 0.69 2Rn CL
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A

Rn Cint



Delay Dependence on Input PatternsDelay Dependence on Input Patterns
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Transistor Sizing a Complex Transistor Sizing a Complex 
CMOS GateCMOS Gate
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OUT = D + A • (B + C)
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FanFan--In ConsiderationsIn Considerations

DCBA

A CL Distributed RC model
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D

C

B
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C3

C2

C1

Distributed RC model
(Elmore delay)

tpHL = 0.69 Reqn(C1+2C2+3C3+4CL)

Propagation delay deteriorates 
rapidly as a function of fan-in –
quadratically in the worst case.
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ttpp as a Function of Fanas a Function of Fan--OutOut
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ttpp as a Function of Fanas a Function of Fan--In and FanIn and Fan--OutOut

Fan-in: quadratic due to increasing 
resistance and capacitance

Fan-out: each additional fan-out gate 
adds two gate capacitances to C
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adds two gate capacitances to CL

tp = a1FI + a2FI2 + a3FO



Fast Complex Gates:Fast Complex Gates:
Design Technique 1Design Technique 1

Transistor sizing
 as long as fan-out capacitance dominates

Progressive sizing
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MN
Distributed RC line

M1 > M2 > M3 > … > MN
(the fet closest to the
output is the smallest)

Can reduce delay by more than 
20%; decreasing gains as 
technology shrinks



Fast Complex Gates:Fast Complex Gates:
Design Technique 2Design Technique 2

Transistor ordering

critical path critical path

01
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Fast Complex Gates:Fast Complex Gates:
Design Technique 3Design Technique 3

Alternative logic structures

F = ABCDEFGH
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Fast Complex Gates:Fast Complex Gates:
Design Technique 4Design Technique 4

 Isolating fan-in from fan-out using buffer 
insertion
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CL
CL



Fast Complex Gates:Fast Complex Gates:
Design Technique 5Design Technique 5

 Reducing the voltage swing

tpHL = 0.69 (3/4 (CL VDD)/ IDSATn )

= 0.69 (3/4 (CL Vswing)/ IDSATn )
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 linear reduction in delay
 also reduces power consumption

 But the following gate is much slower!
 Or requires use of “sense amplifiers” on the 

receiving end to restore the signal level 
(memory design)

= 0.69 (3/4 (CL Vswing)/ IDSATn )



Sizing Logic Paths for SpeedSizing Logic Paths for Speed

 Frequently, input capacitance of a logic path 
is constrained

 Logic also has to drive some capacitance
 Example: ALU load in an Intel’s 
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 Example: ALU load in an Intel’s 
microprocessor is 0.5pF

 How do we size the ALU datapath to achieve 
maximum speed?

 We have already solved this for the inverter 
chain – can we generalize it for any type of 
logic?



Buffer ExampleBuffer Example
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i
iii fgpDelay

1

For given N: Ci+1/Ci = Ci/Ci-1

To find N: Ci+1/Ci ~ 4
How to generalize this to any logic path?

(in units of tinv)



Logical EffortLogical Effort

 fgp

C

C
CRkDelay

in

L
unitunit













t


1

p – intrinsic delay (3kRunitCunit) - gate parameter  f(W)
g – logical effort (kRunitCunit) – gate parameter  f(W)
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g – logical effort (kRunitCunit) – gate parameter  f(W)
f – effective fanout

Normalize everything to an inverter:
ginv =1, pinv = 1

Divide everything by tinv

(everything is measured in unit delays tinv)
Assume   = 1.



Delay in a Logic GateDelay in a Logic Gate

Gate delay:

d = h + p

effort delay intrinsic delay
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Effort delay:

h = g f

logical 
effort

effective fanout  = 
Cout/Cin

Logical effort is a function of topology, independent of sizing
Effective fanout (electrical effort) is a function of load/gate size



Logical EffortLogical Effort

 Inverter has the smallest logical effort and 
intrinsic delay of all static CMOS gates

 Logical effort of a gate presents the ratio of its 
input capacitance to the inverter capacitance 
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input capacitance to the inverter capacitance 
when sized to deliver the same current

 Logical effort increases with the gate 
complexity



Logical EffortLogical Effort
Logical effort is the ratio of input capacitance of a gate to the input
capacitance of an inverter with the same output current
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Logical Effort of GatesLogical Effort of Gates
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Fan-out (h)
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Logical Effort of GatesLogical Effort of Gates
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Logical Effort of GatesLogical Effort of Gates
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Add Branching EffortAdd Branching Effort

Branching effort: 

pathon

pathoffpathon

C

CC
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pathonC 



Multistage NetworksMultistage Networks

Stage effort: hi = gifi
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Path electrical effort: F = Cout/Cin

Path logical effort: G = g1g2…gN

Branching effort: B = b1b2…bN

Path effort: H = GFB

Path delay D = Sdi = Spi + Shi



Optimum Effort per StageOptimum Effort per Stage

HhN 

When each stage bears the same effort:

N Hh 

EE141© Digital Integrated Circuits2nd
Combinational Circuits

53

Hh 

  PNHpfgD N
iii   /1ˆ

Minimum path delay

Effective fanout of each stage:
ii ghf 

Stage efforts: g1f1 = g2f2 = …  = gNfN



Optimal Number of StagesOptimal Number of Stages

For a given load, 
and given input capacitance of the first gate
Find optimal number of stages and optimal sizing

N NpNHD  /1
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inv
N NpNHD  /1

  0ln /1/1/1 



inv
NNN pHHH

N

D

NHh
ˆ/1Substitute ‘best stage effort’



Logical EffortLogical Effort
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From Sutherland, Sproull



Example: Optimize PathExample: Optimize Path
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Effective fanout, F =
G = 
H =
h =
a =
b =  

f = b/a f = c/b



Example: Optimize PathExample: Optimize Path
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f = b/a f = c/b

Effective fanout, F = 5
G = 25/9
H = 125/9 = 13.9
h = 1.93
a = 1.93
b = ha/g2 = 2.23
c = hb/g3 = 5g4/f = 2.59



Example: Optimize PathExample: Optimize Path
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g1 = 1 g2 = 5/3 g3 = 5/3 g4 = 1
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Effective fanout, H = 5
G = 25/9
F = 125/9 = 13.9
f = 1.93
a = 1.93
b = fa/g2 = 2.23
c = fb/g3 = 5g4/f = 2.59

g1 = 1 g2 = 5/3 g3 = 5/3 g4 = 1



Example Example –– 88--input ANDinput AND
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Method of Logical EffortMethod of Logical Effort

 Compute the path effort: F = GBH

 Find the best number of stages N ~ log4F

 Compute the stage effort f = F1/N

Sketch the path with this number of stages
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 Sketch the path with this number of stages

 Work either from either end, find sizes: 
Cin = Cout*g/f

Reference: Sutherland, Sproull, Harris, “Logical Effort, Morgan-Kaufmann 1999.



SummarySummary
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Sutherland,
Sproull
Harris
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Input Pattern Effects on DelayInput Pattern Effects on Delay

 Delay is dependent on 
the pattern of inputs

 Low to high transition
 both inputs go low

R
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 both inputs go low
– delay is 0.69 Rp/2 CL

 one input goes low
– delay is 0.69 Rp CL

 High to low transition
 both inputs go high

– delay is 0.69 2Rn CL
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B

Rn

A

Rn Cint



Delay Dependence on Input PatternsDelay Dependence on Input Patterns
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Transistor SizingTransistor Sizing
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Transistor Sizing a Complex Transistor Sizing a Complex 
CMOS GateCMOS Gate
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OUT = D + A • (B + C)
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FanFan--In ConsiderationsIn Considerations

DCBA

A CL Distributed RC model
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D

C

B

CL

C3

C2

C1

Distributed RC model
(Elmore delay)

tpHL = 0.69 Reqn(C1+2C2+3C3+4CL)

Propagation delay deteriorates 
rapidly as a function of fan-in –
quadratically in the worst case.
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ttpp as a Function of Fanas a Function of Fan--OutOut
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ttpp as a Function of Fanas a Function of Fan--In and FanIn and Fan--OutOut

Fan-in: quadratic due to increasing 
resistance and capacitance

Fan-out: each additional fan-out gate 
adds two gate capacitances to C
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adds two gate capacitances to CL

tp = a1FI + a2FI2 + a3FO



Fast Complex Gates:Fast Complex Gates:
Design Technique 1Design Technique 1

Transistor sizing
 as long as fan-out capacitance dominates

Progressive sizing
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M1
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M3

MN
Distributed RC line

M1 > M2 > M3 > … > MN
(the fet closest to the
output is the smallest)

Can reduce delay by more than 
20%; decreasing gains as 
technology shrinks



Fast Complex Gates:Fast Complex Gates:
Design Technique 2Design Technique 2

Transistor ordering

critical path critical path

01
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Fast Complex Gates:Fast Complex Gates:
Design Technique 3Design Technique 3

Alternative logic structures

F = ABCDEFGH
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Fast Complex Gates:Fast Complex Gates:
Design Technique 4Design Technique 4

 Isolating fan-in from fan-out using buffer 
insertion
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CL
CL



Fast Complex Gates:Fast Complex Gates:
Design Technique 5Design Technique 5

 Reducing the voltage swing

tpHL = 0.69 (3/4 (CL VDD)/ IDSATn )

= 0.69 (3/4 (CL Vswing)/ IDSATn )
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 linear reduction in delay
 also reduces power consumption

 But the following gate is much slower!
 Or requires use of “sense amplifiers” on the 

receiving end to restore the signal level 
(memory design)

= 0.69 (3/4 (CL Vswing)/ IDSATn )



Sizing Logic Paths for SpeedSizing Logic Paths for Speed

 Frequently, input capacitance of a logic path 
is constrained

 Logic also has to drive some capacitance
 Example: ALU load in an Intel’s 
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 Example: ALU load in an Intel’s 
microprocessor is 0.5pF

 How do we size the ALU datapath to achieve 
maximum speed?

 We have already solved this for the inverter 
chain – can we generalize it for any type of 
logic?



Buffer ExampleBuffer Example
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1

For given N: Ci+1/Ci = Ci/Ci-1

To find N: Ci+1/Ci ~ 4
How to generalize this to any logic path?

(in units of tinv)



Logical EffortLogical Effort
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p – intrinsic delay (3kRunitCunit) - gate parameter  f(W)
g – logical effort (kRunitCunit) – gate parameter  f(W)
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g – logical effort (kRunitCunit) – gate parameter  f(W)
f – effective fanout

Normalize everything to an inverter:
ginv =1, pinv = 1

Divide everything by tinv

(everything is measured in unit delays tinv)
Assume   = 1.



Delay in a Logic GateDelay in a Logic Gate

Gate delay:

d = h + p

effort delay intrinsic delay
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Effort delay:

h = g f

logical 
effort

effective fanout  = 
Cout/Cin

Logical effort is a function of topology, independent of sizing
Effective fanout (electrical effort) is a function of load/gate size



Logical EffortLogical Effort

 Inverter has the smallest logical effort and 
intrinsic delay of all static CMOS gates

 Logical effort of a gate presents the ratio of its 
input capacitance to the inverter capacitance 
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input capacitance to the inverter capacitance 
when sized to deliver the same current

 Logical effort increases with the gate 
complexity



Logical EffortLogical Effort
Logical effort is the ratio of input capacitance of a gate to the input
capacitance of an inverter with the same output current
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Logical Effort of GatesLogical Effort of Gates
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Logical Effort of GatesLogical Effort of Gates
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Logical Effort of GatesLogical Effort of Gates
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Add Branching EffortAdd Branching Effort

Branching effort: 

pathon

pathoffpathon
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pathonC 



Multistage NetworksMultistage Networks

Stage effort: hi = gifi
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Path electrical effort: F = Cout/Cin

Path logical effort: G = g1g2…gN

Branching effort: B = b1b2…bN

Path effort: H = GFB

Path delay D = Sdi = Spi + Shi



Optimum Effort per StageOptimum Effort per Stage

HhN 

When each stage bears the same effort:

N Hh 
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Hh 

  PNHpfgD N
iii   /1ˆ

Minimum path delay

Effective fanout of each stage:
ii ghf 

Stage efforts: g1f1 = g2f2 = …  = gNfN



Optimal Number of StagesOptimal Number of Stages

For a given load, 
and given input capacitance of the first gate
Find optimal number of stages and optimal sizing

N NpNHD  /1

EE141© Digital Integrated Circuits2nd
Combinational Circuits

54

inv
N NpNHD  /1

  0ln /1/1/1 



inv
NNN pHHH

N

D

NHh
ˆ/1Substitute ‘best stage effort’



Logical EffortLogical Effort
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From Sutherland, Sproull



Example: Optimize PathExample: Optimize Path
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f = b/a

g = 5/3
f = c/b

g = 1
f = 5/c
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Effective fanout, F =
G = 
H =
h =
a =
b =  

f = b/a f = c/b



Example: Optimize PathExample: Optimize Path

1
a

b c

5

g = 1
f = a

g = 5/3
f = b/a

g = 5/3
f = c/b

g = 1
f = 5/c
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f = b/a f = c/b

Effective fanout, F = 5
G = 25/9
H = 125/9 = 13.9
h = 1.93
a = 1.93
b = ha/g2 = 2.23
c = hb/g3 = 5g4/f = 2.59



Example: Optimize PathExample: Optimize Path

 
1 

a 
b c 

5 

g1 = 1 g2 = 5/3 g3 = 5/3 g4 = 1
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Effective fanout, H = 5
G = 25/9
F = 125/9 = 13.9
f = 1.93
a = 1.93
b = fa/g2 = 2.23
c = fb/g3 = 5g4/f = 2.59

g1 = 1 g2 = 5/3 g3 = 5/3 g4 = 1



Example Example –– 88--input ANDinput AND
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Method of Logical EffortMethod of Logical Effort

 Compute the path effort: F = GBH

 Find the best number of stages N ~ log4F

 Compute the stage effort f = F1/N

Sketch the path with this number of stages
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 Sketch the path with this number of stages

 Work either from either end, find sizes: 
Cin = Cout*g/f

Reference: Sutherland, Sproull, Harris, “Logical Effort, Morgan-Kaufmann 1999.



SummarySummary
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Sutherland,
Sproull
Harris


