Switch Delay Model

28
© Digital Integrated Circuits ${ }^{2 n d}$
Combinational Circuits

Input Pattern Effects on Delay

\square Delay is dependent on the pattern of inputs

- Low to high transition
- both inputs go low
- delay is $0.69 R_{p} / 2 C_{L}$
- one input goes low
- delay is $0.69 R_{p} C_{L}$
- High to low transition
- both inputs go high
- delay is $0.692 R_{n} C_{L}$

Delay Dependence on Input Patterns

Transistor Sizing

Transistor Sizing a Complex CMOS Gate

Fan-In Considerations

Distributed RC model
(Elmore delay)
$t_{\text {pHL }}=0.69 R_{\text {eqn }}\left(C_{1}+2 C_{2}+3 C_{3}+4 C_{L}\right)$
Propagation delay deteriorates rapidly as a function of fan-in quadratically in the worst case.

t_{p} as a Function of Fan-In

t_{p} as a Function of Fan-Out

All gates have the same drive current.

Slope is a function of "driving strength"

t_{p} as a Function of Fan-In and Fan-Out

\square Fan-in: quadratic due to increasing resistance and capacitance
\square Fan-out: each additional fan-out gate adds two gate capacitances to C_{L}

$$
t_{p}=a_{1} F I+a_{2} \mathrm{FI}^{2}+a_{3} F O
$$

Fast Complex Gates: Design Technique 1

- Transistor sizing
- as long as fan-out capacitance dominates
\square Progressive sizing

Distributed RC line $\mathrm{M} 1>\mathrm{M} 2>\mathrm{M} 3>\ldots>\mathrm{MN}$ (the fet closest to the output is the smallest)

Can reduce delay by more than 20\%; decreasing gains as technology shrinks

Fast Complex Gates: Design Technique 2

\square Transistor ordering

delay determined by time to discharge $\mathrm{C}_{\mathrm{L}}, \mathrm{C}_{1}$ and C_{2}
critical path

delay determined by time to discharge C_{L}

Fast Complex Gates: Design Technique 3

\square Alternative logic structures

$$
F=A B C D E F G H
$$

Fast Complex Gates: Design Technique 4

- Isolating fan-in from fan-out using buffer insertion

Fast Complex Gates: Design Technique 5

\square Reducing the voltage swing

$$
\begin{aligned}
\mathrm{t}_{\mathrm{pHL}} & =0.69\left(3 / 4\left(\mathrm{C}_{\mathrm{L}} \mathrm{~V}_{\mathrm{DD}}\right) / \mathrm{I}_{\mathrm{DSATn}}\right) \\
& =0.69\left(3 / 4\left(\mathrm{C}_{\mathrm{L}} \mathrm{~V}_{\text {swing }}\right) / I_{\mathrm{DSATn}}\right)
\end{aligned}
$$

- linear reduction in delay
- also reduces power consumption
- But the following gate is much slower!
- Or requires use of "sense amplifiers" on the receiving end to restore the signal level (memory design)

Sizing Logic Paths for Speed

- Frequently, input capacitance of a logic path is constrained
- Logic also has to drive some capacitance
- Example: ALU load in an Intel's microprocessor is 0.5 pF
- How do we size the ALU datapath to achieve maximum speed?
- We have already solved this for the inverter chain - can we generalize it for any type of logic?

Buffer Example

For given N : $C_{i+1} / C_{i}=C_{i} / C_{i-1}$
To find $N: C_{i+1} / C_{i} \sim 4$
How to generalize this to any logic path?

Logical Effort

$$
\begin{aligned}
& \text { Delay }=k \cdot R_{u n i t} C_{u n i t}\left(1+\frac{C_{L}}{\gamma C_{i n}}\right) \\
& =\tau(p+g \cdot f)
\end{aligned}
$$

p - intrinsic delay $\left(3 \mathrm{k} R_{\text {unit }} C_{\text {unit }} \gamma\right)$ - gate parameter $\neq \mathrm{f}(W)$
g - logical effort ($\mathrm{k} R_{\text {unit }} C_{\text {unit }}$) - gate parameter $\neq \mathrm{f}(W)$
f - effective fanout

Normalize everything to an inverter:
$g_{i n v}=1, p_{i n v}=1$
Divide everything by $\tau_{i n v}$
(everything is measured in unit delays $\tau_{i n v}$)
Assume $\gamma=1$.

Delay in a Logic Gate

Gate delay:

Effort delay:

Logical effort is a function of topology, independent of sizing Effective fanout (electrical effort) is a function of load/gate size

Logical Effort

- Inverter has the smallest logical effort and intrinsic delay of all static CMOS gates
- Logical effort of a gate presents the ratio of its input capacitance to the inverter capacitance when sized to deliver the same current
- Logical effort increases with the gate complexity

Logical Effort

Logical effort is the ratio of input capacitance of a gate to the input capacitance of an inverter with the same output current

Inverter
$g=1$
2-input NAND
$g=4 / 3$

2-input NOR
$g=5 / 3$

Logical Effort of Gates

Logical Effort of Gates

Logical Effort of Gates

Add Branching Effort

Branching effort:

$$
b=\frac{C_{\text {on- path }}+C_{o f f}-\text { path }}{C_{\text {on-path }}}
$$

Multistage Networks

$$
\text { Delay }=\sum_{i=1}^{N}\left(p_{i}+g_{i} \cdot f_{i}\right)
$$

Stage effort: $h_{i}=g_{i} f_{i}$
Path electrical effort: $F=C_{\text {out }} / C_{\text {in }}$
Path logical effort: $G=g_{1} g_{2} \ldots g_{N}$
Branching effort: $B=b_{1} b_{2} \ldots b_{N}$
Path effort: $H=G F B$
Path delay $D=\Sigma d_{i}=\Sigma p_{i}+\Sigma h_{i}$

Optimum Effort per Stage

When each stage bears the same effort:

$$
\begin{aligned}
& h^{N}=H \\
& h=\sqrt[N]{H}
\end{aligned}
$$

Stage efforts: $g_{1} f_{1}=g_{2} f_{2}=\ldots=g_{N} f_{N}$
Effective fanout of each stage: $f_{i}=h / g_{i}$
Minimum path delay

$$
\hat{D}=\sum\left(g_{i} f_{i}+p_{i}\right)=N H^{1 / N}+P
$$

Optimal Number of Stages

For a given load, and given input capacitance of the first gate Find optimal number of stages and optimal sizing

$$
\begin{gathered}
D=N H^{1 / N}+N p_{i n v} \\
\frac{\partial D}{\partial N}=-H^{1 / N} \ln \left(H^{1 / N}\right)+H^{1 / N}+p_{i n v}=0
\end{gathered}
$$

Substitute 'best stage effort' $\quad h=H^{1 / \hat{N}}$

Logical Effort

	Number of Inputs			
Gate Type	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	\mathbf{n}
Inverter	1			$(\mathrm{n}+2) / 3$
NAND	$4 / 3$	$5 / 3$	$(2 \mathrm{n}+1) / 3$	
NOR	$5 / 3$	$7 / 3$	2	
Multiplexer	2	2		
XOR	4	12		

From Sutherland, Sproull

Example: Optimize Path

Effective fanout, F = $G=$
$H=$
$h=$
$a=$
$b=$

Example: Optimize Path

Effective fanout, $F=5$

$$
\begin{aligned}
& G=25 / 9 \\
& H=125 / 9=13.9 \\
& h=1.93 \\
& a=1.93 \\
& b=h a / g_{2}=2.23 \\
& c=h b / g_{3}=5 g_{4} / f=2.59
\end{aligned}
$$

Example: Optimize Path

Effective fanout, $H=5$
$G=25 / 9$
$F=125 / 9=13.9$
$f=1.93$
$a=1.93$
$b=\mathrm{fa} / \mathrm{g}_{2}=2.23$
$c=f b / g_{3}=5 g_{4} / f=2.59$

Example - 8-input AND

Method of Logical Effort

- Compute the path effort: $F=G B H$
- Find the best number of stages $N \sim \log _{4} F$
\square Compute the stage effort $f=F^{1 / N}$
\square Sketch the path with this number of stages
\square Work either from either end, find sizes:
$C_{\text {in }}=C_{\text {out }}{ }^{*} g / f$

Reference: Sutherland, Sproull, Harris, "Logical Effort, Morgan-Kaufmann 1999.

Summary

Table 4: Key Definitions of Logical Effort

Term	Stage expression	Path expression
Logical effort	g (seeTable 1)	$G=\prod g_{i}$
Electrical effort	$h=\frac{C_{\text {out }}}{C_{\text {in }}}$	$H=\frac{C_{\text {out (path) }}}{C_{\text {in (path) }}}$
Branching effort	n / a	$B=\prod b_{i}$
Effort	$f=g h$	$F=G B H$
Effort delay	f	$D_{F}=\sum f_{i}$
Number of stages	1	N
Parasitic delay	p (seeTable 2)	$P=\sum p_{i}$
Delay	$d=f+p$	$D=D_{F}+P$

Sutherland, Sproull Harris

Switch Delay Model

28
© Digital Integrated Circuits ${ }^{2 n d}$
Combinational Circuits

Input Pattern Effects on Delay

\square Delay is dependent on the pattern of inputs

- Low to high transition
- both inputs go low
- delay is $0.69 R_{p} / 2 C_{L}$
- one input goes low
- delay is $0.69 R_{p} C_{L}$
- High to low transition
- both inputs go high
- delay is $0.692 R_{n} C_{L}$

Delay Dependence on Input Patterns

Transistor Sizing

Transistor Sizing a Complex CMOS Gate

Fan-In Considerations

Distributed RC model
(Elmore delay)
$t_{\text {pHL }}=0.69 R_{\text {eqn }}\left(C_{1}+2 C_{2}+3 C_{3}+4 C_{L}\right)$
Propagation delay deteriorates rapidly as a function of fan-in quadratically in the worst case.

t_{p} as a Function of Fan-In

t_{p} as a Function of Fan-Out

All gates have the same drive current.

Slope is a function of "driving strength"

t_{p} as a Function of Fan-In and Fan-Out

\square Fan-in: quadratic due to increasing resistance and capacitance
\square Fan-out: each additional fan-out gate adds two gate capacitances to C_{L}

$$
t_{p}=a_{1} F I+a_{2} \mathrm{FI}^{2}+a_{3} F O
$$

Fast Complex Gates: Design Technique 1

- Transistor sizing
- as long as fan-out capacitance dominates
\square Progressive sizing

Distributed RC line $\mathrm{M} 1>\mathrm{M} 2>\mathrm{M} 3>\ldots>\mathrm{MN}$ (the fet closest to the output is the smallest)

Can reduce delay by more than 20\%; decreasing gains as technology shrinks

Fast Complex Gates: Design Technique 2

\square Transistor ordering

delay determined by time to discharge $\mathrm{C}_{\mathrm{L}}, \mathrm{C}_{1}$ and C_{2}
critical path

delay determined by time to discharge C_{L}

Fast Complex Gates: Design Technique 3

\square Alternative logic structures

$$
F=A B C D E F G H
$$

Fast Complex Gates: Design Technique 4

- Isolating fan-in from fan-out using buffer insertion

Fast Complex Gates: Design Technique 5

\square Reducing the voltage swing

$$
\begin{aligned}
\mathrm{t}_{\mathrm{pHL}} & =0.69\left(3 / 4\left(\mathrm{C}_{\mathrm{L}} \mathrm{~V}_{\mathrm{DD}}\right) / \mathrm{I}_{\mathrm{DSATn}}\right) \\
& =0.69\left(3 / 4\left(\mathrm{C}_{\mathrm{L}} \mathrm{~V}_{\text {swing }}\right) / I_{\mathrm{DSATn}}\right)
\end{aligned}
$$

- linear reduction in delay
- also reduces power consumption
- But the following gate is much slower!
- Or requires use of "sense amplifiers" on the receiving end to restore the signal level (memory design)

Sizing Logic Paths for Speed

- Frequently, input capacitance of a logic path is constrained
- Logic also has to drive some capacitance
- Example: ALU load in an Intel's microprocessor is 0.5 pF
- How do we size the ALU datapath to achieve maximum speed?
- We have already solved this for the inverter chain - can we generalize it for any type of logic?

Buffer Example

For given N : $C_{i+1} / C_{i}=C_{i} / C_{i-1}$
To find $N: C_{i+1} / C_{i} \sim 4$
How to generalize this to any logic path?

Logical Effort

$$
\begin{aligned}
& \text { Delay }=k \cdot R_{u n i t} C_{u n i t}\left(1+\frac{C_{L}}{\gamma C_{i n}}\right) \\
& =\tau(p+g \cdot f)
\end{aligned}
$$

p - intrinsic delay $\left(3 \mathrm{k} R_{\text {unit }} C_{\text {unit }} \gamma\right)$ - gate parameter $\neq \mathrm{f}(W)$
g - logical effort ($\mathrm{k} R_{\text {unit }} C_{\text {unit }}$) - gate parameter $\neq \mathrm{f}(W)$
f - effective fanout

Normalize everything to an inverter:
$g_{i n v}=1, p_{i n v}=1$
Divide everything by $\tau_{i n v}$
(everything is measured in unit delays $\tau_{i n v}$)
Assume $\gamma=1$.

Delay in a Logic Gate

Gate delay:

Effort delay:

Logical effort is a function of topology, independent of sizing Effective fanout (electrical effort) is a function of load/gate size

Logical Effort

- Inverter has the smallest logical effort and intrinsic delay of all static CMOS gates
- Logical effort of a gate presents the ratio of its input capacitance to the inverter capacitance when sized to deliver the same current
- Logical effort increases with the gate complexity

Logical Effort

Logical effort is the ratio of input capacitance of a gate to the input capacitance of an inverter with the same output current

Inverter
$g=1$
2-input NAND
$g=4 / 3$

2-input NOR
$g=5 / 3$

Logical Effort of Gates

Logical Effort of Gates

Logical Effort of Gates

Add Branching Effort

Branching effort:

$$
b=\frac{C_{\text {on- path }}+C_{o f f}-\text { path }}{C_{\text {on-path }}}
$$

Multistage Networks

$$
\text { Delay }=\sum_{i=1}^{N}\left(p_{i}+g_{i} \cdot f_{i}\right)
$$

Stage effort: $h_{i}=g_{i} f_{i}$
Path electrical effort: $F=C_{\text {out }} / C_{\text {in }}$
Path logical effort: $G=g_{1} g_{2} \ldots g_{N}$
Branching effort: $B=b_{1} b_{2} \ldots b_{N}$
Path effort: $H=G F B$
Path delay $D=\Sigma d_{i}=\Sigma p_{i}+\Sigma h_{i}$

Optimum Effort per Stage

When each stage bears the same effort:

$$
\begin{aligned}
& h^{N}=H \\
& h=\sqrt[N]{H}
\end{aligned}
$$

Stage efforts: $g_{1} f_{1}=g_{2} f_{2}=\ldots=g_{N} f_{N}$
Effective fanout of each stage: $f_{i}=h / g_{i}$
Minimum path delay

$$
\hat{D}=\sum\left(g_{i} f_{i}+p_{i}\right)=N H^{1 / N}+P
$$

Optimal Number of Stages

For a given load, and given input capacitance of the first gate Find optimal number of stages and optimal sizing

$$
\begin{gathered}
D=N H^{1 / N}+N p_{i n v} \\
\frac{\partial D}{\partial N}=-H^{1 / N} \ln \left(H^{1 / N}\right)+H^{1 / N}+p_{i n v}=0
\end{gathered}
$$

Substitute 'best stage effort' $\quad h=H^{1 / \hat{N}}$

Logical Effort

	Number of Inputs			
Gate Type	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	\mathbf{n}
Inverter	1			$(\mathrm{n}+2) / 3$
NAND	$4 / 3$	$5 / 3$	$(2 \mathrm{n}+1) / 3$	
NOR	$5 / 3$	$7 / 3$	2	
Multiplexer	2	2		
XOR	4	12		

From Sutherland, Sproull

Example: Optimize Path

Effective fanout, F = $G=$
$H=$
$h=$
$a=$
$b=$

Example: Optimize Path

Effective fanout, $F=5$

$$
\begin{aligned}
& G=25 / 9 \\
& H=125 / 9=13.9 \\
& h=1.93 \\
& a=1.93 \\
& b=h a / g_{2}=2.23 \\
& c=h b / g_{3}=5 g_{4} / f=2.59
\end{aligned}
$$

Example: Optimize Path

Effective fanout, $H=5$
$G=25 / 9$
$F=125 / 9=13.9$
$f=1.93$
$a=1.93$
$b=\mathrm{fa} / \mathrm{g}_{2}=2.23$
$c=f b / g_{3}=5 g_{4} / f=2.59$

Example - 8-input AND

Method of Logical Effort

- Compute the path effort: $F=G B H$
- Find the best number of stages $N \sim \log _{4} F$
\square Compute the stage effort $f=F^{1 / N}$
\square Sketch the path with this number of stages
\square Work either from either end, find sizes:
$C_{\text {in }}=C_{\text {out }}{ }^{*} g / f$

Reference: Sutherland, Sproull, Harris, "Logical Effort, Morgan-Kaufmann 1999.

Summary

Table 4: Key Definitions of Logical Effort

Term	Stage expression	Path expression
Logical effort	g (seeTable 1)	$G=\prod g_{i}$
Electrical effort	$h=\frac{C_{\text {out }}}{C_{\text {in }}}$	$H=\frac{C_{\text {out (path) }}}{C_{\text {in (path) }}}$
Branching effort	n / a	$B=\prod b_{i}$
Effort	$f=g h$	$F=G B H$
Effort delay	f	$D_{F}=\sum f_{i}$
Number of stages	1	N
Parasitic delay	p (seeTable 2)	$P=\sum p_{i}$
Delay	$d=f+p$	$D=D_{F}+P$

Sutherland, Sproull Harris

