

© Digital Integrated Circuits^{2nd}

Input Pattern Effects on Delay

 Delay is dependent on the pattern of inputs
 Low to high transition

- both inputs go low
 dolay is 0.69 P. /2 (
 - delay is 0.69 $R_p/2 C_L$
- one input goes low
 delay is 0.69 R_p C_L
- □ High to low transition
 - both inputs go high
 - delay is 0.69 $2R_n C_L$

Delay Dependence on Input Patterns

Transistor Sizing

Transistor Sizing a Complex CMOS Gate

© Digital Integrated Circuits^{2nd}

Fan-In Considerations

Distributed RC model (Elmore delay)

$$_{\text{pHL}} = 0.69 \text{ R}_{\text{eqn}}(\text{C}_{1} + 2\text{C}_{2} + 3\text{C}_{3} + 4\text{C}_{\text{L}})$$

Propagation delay deteriorates rapidly as a function of fan-in – quadratically in the worst case.

t_p as a Function of Fan-In

© Digital Integrated Circuits^{2nd}

t_p as a Function of Fan-Out

© Digital Integrated Circuits^{2nd}

t_p as a Function of Fan-In and Fan-Out

- Fan-in: quadratic due to increasing resistance and capacitance
- □ Fan-out: each additional fan-out gate adds two gate capacitances to C_L

$$t_p = a_1 F I + a_2 F I^2 + a_3 F O$$

© Digital Integrated Circuits^{2nd}

- Transistor sizing
 - as long as fan-out capacitance dominates
- Progressive sizing

Distributed RC line

M1 > M2 > M3 > ... > MN (the fet closest to the output is the smallest)

Can reduce delay by more than 20%; decreasing gains as technology shrinks

© Digital Integrated Circuits^{2nd}

© Digital Integrated Circuits^{2nd}

□ Alternative logic structures

F = ABCDEFGH

© Digital Integrated Circuits^{2nd}

Isolating fan-in from fan-out using buffer insertion

Reducing the voltage swing

 $t_{pHL} = 0.69 (3/4 (C_L V_{DD}) / I_{DSATn})$

= 0.69 (3/4 ($C_L V_{swing}$)/ I_{DSATn})

- linear reduction in delay
- also reduces power consumption

But the following gate is much slower!
 Or requires use of "sense amplifiers" on the receiving end to restore the signal level (memory design)

Sizing Logic Paths for Speed

- Frequently, input capacitance of a logic path is constrained
- Logic also has to drive some capacitance
- Example: ALU load in an Intel's microprocessor is 0.5pF
- How do we size the ALU datapath to achieve maximum speed?
- We have already solved this for the inverter chain – can we generalize it for any type of logic?

For given *N*: $C_{i+1}/C_i = C_i/C_{i-1}$ To find *N*: $C_{i+1}/C_i \sim 4$ How to generalize this to any logic path?

© Digital Integrated Circuits^{2nd}

Logical Effort

$$Delay = k \cdot R_{unit} C_{unit} \left(1 + \frac{C_L}{\gamma C_{in}} \right)$$
$$= \tau \left(p + g \cdot f \right)$$

p – intrinsic delay (3k $R_{unit}C_{unit}$) - gate parameter ≠ f(*W*) *g* – logical effort (k $R_{unit}C_{unit}$) – gate parameter ≠ f(*W*) *f* – effective fanout

Normalize everything to an inverter: $g_{inv} = 1, p_{inv} = 1$

Divide everything by τ_{inv} (everything is measured in unit delays τ_{inv}) Assume $\gamma = 1$.

© Digital Integrated Circuits^{2nd}

Delay in a Logic Gate

Logical effort is a function of topology, independent of sizing Effective fanout (electrical effort) is a function of load/gate size

© Digital Integrated Circuits^{2nd}

- Inverter has the smallest logical effort and intrinsic delay of all static CMOS gates
- Logical effort of a gate presents the ratio of its input capacitance to the inverter capacitance when sized to deliver the same current
- Logical effort increases with the gate complexity

Logical effort is the ratio of input capacitance of a gate to the input capacitance of an inverter with the same output current

© Digital Integrated Circuits^{2nd}

Logical Effort of Gates

Logical Effort of Gates

Logical Effort of Gates

© Digital Integrated Circuits^{2nd}

Combinational Circuits

50

Add Branching Effort

Branching effort:

$$b = \frac{C_{on-path} + C_{off-path}}{C_{on-path}}$$

© Digital Integrated Circuits^{2nd}

Multistage Networks

$$Delay = \sum_{i=1}^{N} (p_i + g_i \cdot f_i)$$

Stage effort: $h_i = g_i f_i$

Path electrical effort: $F = C_{out}/C_{in}$

Path logical effort: $G = g_1 g_2 \dots g_N$

Branching effort: $B = b_1 b_2 \dots b_N$

Path effort: H = GFB

Path delay $D = \Sigma d_i = \Sigma p_i + \Sigma h_i$

© Digital Integrated Circuits^{2nd}

Optimum Effort per Stage

When each stage bears the same effort:

$$h^{N} = H$$
$$h = \sqrt[N]{H}$$

Stage efforts: $g_1f_1 = g_2f_2 = \dots = g_Nf_N$

Effective fanout of each stage: $f_i = h/g_i$

Minimum path delay

$$\hat{D} = \sum (g_i f_i + p_i) = NH^{1/N} + P$$

Optimal Number of Stages

For a given load, and given input capacitance of the first gate Find optimal number of stages and optimal sizing

1/77

$$D = NH^{1/N} + Np_{inv}$$
$$\frac{\partial D}{\partial N} = -H^{1/N} \ln(H^{1/N}) + H^{1/N} + p_{inv} = 0$$

Substitute 'best stage effort' $h = H^{1/\hat{N}}$

© Digital Integrated Circuits^{2nd}

Logical Effort

	Number of Inputs			
Gate Type	1	2	3	n
Inverter	1			
NAND		4/3	5/3	(n + 2)/3
NOR		5/3	7/3	(2n + 1)/3
Multiplexer		2	2	2
XOR		4	12	

From Sutherland, Sproull

© Digital Integrated Circuits^{2nd}

Example: Optimize Path

Effective fanout, F = G =

- H =
- *h* =
- a =
- b =

© Digital Integrated Circuits^{2nd}

Example: Optimize Path

Effective fanout, F = 5 G = 25/9 H = 125/9 = 13.9 h = 1.93 a = 1.93 $b = ha/g_2 = 2.23$ $c = hb/g_3 = 5g_4/f = 2.59$

57 Combinational Circuits

© Digital Integrated Circuits^{2nd}

Example: Optimize Path

Effective fanout, H = 5 G = 25/9 F = 125/9 = 13.9 f = 1.93 a = 1.93 $b = fa/g_2 = 2.23$ $c = fb/g_3 = 5g_4/f = 2.59$

58 Combinational Circuits

© Digital Integrated Circuits^{2nd}

Example – 8-input AND

Method of Logical Effort

 Compute the path effort: F = GBH
 Find the best number of stages N ~ log₄F
 Compute the stage effort f = F^{1/N}
 Sketch the path with this number of stages
 Work either from either end, find sizes: C_{in} = C_{out}*g/f

Reference: Sutherland, Sproull, Harris, "Logical Effort, Morgan-Kaufmann 1999.

Table 4: Key Definitions of Logical Effort

Term	Stage expression	Path expression
Logical effort	$oldsymbol{g}$ (seeTable 1)	$G = \prod g_i$
Electrical effort	$h = \frac{C_{out}}{C_{in}}$	$H = rac{C_{out (path)}}{C_{in (path)}}$
Branching effort	n/a	$B = \prod b_i$
Effort	f = gh	F = GBH
Effort delay	f	$D_F = \sum f_i$
Number of stages	1	N
Parasitic delay	$oldsymbol{ ho}$ (seeTable 2)	$P = \sum p_i$
Delay	d = f + p	$D = D_F^+ P$

Sutherland, Sproull Harris

© Digital Integrated Circuits^{2nd}

Input Pattern Effects on Delay

 Delay is dependent on the pattern of inputs
 Low to high transition

- both inputs go low
 dolay is 0.69 P. /2 (
 - delay is 0.69 $R_p/2 C_L$
- one input goes low
 delay is 0.69 R_p C_L
- □ High to low transition
 - both inputs go high
 - delay is 0.69 $2R_n C_L$

Delay Dependence on Input Patterns

Transistor Sizing

Transistor Sizing a Complex CMOS Gate

© Digital Integrated Circuits^{2nd}

Fan-In Considerations

Distributed RC model (Elmore delay)

$$_{\text{pHL}} = 0.69 \text{ R}_{\text{eqn}}(\text{C}_{1} + 2\text{C}_{2} + 3\text{C}_{3} + 4\text{C}_{\text{L}})$$

Propagation delay deteriorates rapidly as a function of fan-in – quadratically in the worst case.

t_p as a Function of Fan-In

© Digital Integrated Circuits^{2nd}

t_p as a Function of Fan-Out

© Digital Integrated Circuits^{2nd}

t_p as a Function of Fan-In and Fan-Out

- Fan-in: quadratic due to increasing resistance and capacitance
- □ Fan-out: each additional fan-out gate adds two gate capacitances to C_L

$$t_p = a_1 F I + a_2 F I^2 + a_3 F O$$

© Digital Integrated Circuits^{2nd}

- Transistor sizing
 - as long as fan-out capacitance dominates
- Progressive sizing

Distributed RC line

M1 > M2 > M3 > ... > MN (the fet closest to the output is the smallest)

Can reduce delay by more than 20%; decreasing gains as technology shrinks

© Digital Integrated Circuits^{2nd}

© Digital Integrated Circuits^{2nd}

□ Alternative logic structures

F = ABCDEFGH

© Digital Integrated Circuits^{2nd}

Isolating fan-in from fan-out using buffer insertion

Reducing the voltage swing

 $t_{pHL} = 0.69 (3/4 (C_L V_{DD}) / I_{DSATn})$

= 0.69 (3/4 ($C_L V_{swing}$)/ I_{DSATn})

- linear reduction in delay
- also reduces power consumption

But the following gate is much slower!
 Or requires use of "sense amplifiers" on the receiving end to restore the signal level (memory design)

Sizing Logic Paths for Speed

- Frequently, input capacitance of a logic path is constrained
- Logic also has to drive some capacitance
- Example: ALU load in an Intel's microprocessor is 0.5pF
- How do we size the ALU datapath to achieve maximum speed?
- We have already solved this for the inverter chain – can we generalize it for any type of logic?

For given *N*: $C_{i+1}/C_i = C_i/C_{i-1}$ To find *N*: $C_{i+1}/C_i \sim 4$ How to generalize this to any logic path?

© Digital Integrated Circuits^{2nd}

Logical Effort

$$Delay = k \cdot R_{unit} C_{unit} \left(1 + \frac{C_L}{\gamma C_{in}} \right)$$
$$= \tau \left(p + g \cdot f \right)$$

p – intrinsic delay (3k $R_{unit}C_{unit}$) - gate parameter ≠ f(*W*) *g* – logical effort (k $R_{unit}C_{unit}$) – gate parameter ≠ f(*W*) *f* – effective fanout

Normalize everything to an inverter: $g_{inv} = 1, p_{inv} = 1$

Divide everything by τ_{inv} (everything is measured in unit delays τ_{inv}) Assume $\gamma = 1$.

© Digital Integrated Circuits^{2nd}

Delay in a Logic Gate

Logical effort is a function of topology, independent of sizing Effective fanout (electrical effort) is a function of load/gate size

© Digital Integrated Circuits^{2nd}

- Inverter has the smallest logical effort and intrinsic delay of all static CMOS gates
- Logical effort of a gate presents the ratio of its input capacitance to the inverter capacitance when sized to deliver the same current
- Logical effort increases with the gate complexity

Logical effort is the ratio of input capacitance of a gate to the input capacitance of an inverter with the same output current

© Digital Integrated Circuits^{2nd}

Logical Effort of Gates

Logical Effort of Gates

Logical Effort of Gates

© Digital Integrated Circuits^{2nd}

Combinational Circuits

50

Add Branching Effort

Branching effort:

$$b = \frac{C_{on-path} + C_{off-path}}{C_{on-path}}$$

© Digital Integrated Circuits^{2nd}

Multistage Networks

$$Delay = \sum_{i=1}^{N} (p_i + g_i \cdot f_i)$$

Stage effort: $h_i = g_i f_i$

Path electrical effort: $F = C_{out}/C_{in}$

Path logical effort: $G = g_1 g_2 \dots g_N$

Branching effort: $B = b_1 b_2 \dots b_N$

Path effort: H = GFB

Path delay $D = \Sigma d_i = \Sigma p_i + \Sigma h_i$

© Digital Integrated Circuits^{2nd}

Optimum Effort per Stage

When each stage bears the same effort:

$$h^{N} = H$$
$$h = \sqrt[N]{H}$$

Stage efforts: $g_1f_1 = g_2f_2 = \dots = g_Nf_N$

Effective fanout of each stage: $f_i = h/g_i$

Minimum path delay

$$\hat{D} = \sum (g_i f_i + p_i) = NH^{1/N} + P$$

Optimal Number of Stages

For a given load, and given input capacitance of the first gate Find optimal number of stages and optimal sizing

1/77

$$D = NH^{1/N} + Np_{inv}$$
$$\frac{\partial D}{\partial N} = -H^{1/N} \ln(H^{1/N}) + H^{1/N} + p_{inv} = 0$$

Substitute 'best stage effort' $h = H^{1/\hat{N}}$

© Digital Integrated Circuits^{2nd}

Logical Effort

	Number of Inputs			
Gate Type	1	2	3	n
Inverter	1			
NAND		4/3	5/3	(n + 2)/3
NOR		5/3	7/3	(2n + 1)/3
Multiplexer		2	2	2
XOR		4	12	

From Sutherland, Sproull

© Digital Integrated Circuits^{2nd}

Example: Optimize Path

Effective fanout, F = G =

- H =
- *h* =
- a =
- b =

© Digital Integrated Circuits^{2nd}

Example: Optimize Path

Effective fanout, F = 5 G = 25/9 H = 125/9 = 13.9 h = 1.93 a = 1.93 $b = ha/g_2 = 2.23$ $c = hb/g_3 = 5g_4/f = 2.59$

57 Combinational Circuits

© Digital Integrated Circuits^{2nd}

Example: Optimize Path

Effective fanout, H = 5 G = 25/9 F = 125/9 = 13.9 f = 1.93 a = 1.93 $b = fa/g_2 = 2.23$ $c = fb/g_3 = 5g_4/f = 2.59$

58 Combinational Circuits

© Digital Integrated Circuits^{2nd}

Example – 8-input AND

Method of Logical Effort

 Compute the path effort: F = GBH
 Find the best number of stages N ~ log₄F
 Compute the stage effort f = F^{1/N}
 Sketch the path with this number of stages
 Work either from either end, find sizes: C_{in} = C_{out}*g/f

Reference: Sutherland, Sproull, Harris, "Logical Effort, Morgan-Kaufmann 1999.

Table 4: Key Definitions of Logical Effort

Term	Stage expression	Path expression
Logical effort	$oldsymbol{g}$ (seeTable 1)	$G = \prod g_i$
Electrical effort	$h = \frac{C_{out}}{C_{in}}$	$H = rac{C_{out (path)}}{C_{in (path)}}$
Branching effort	n/a	$B = \prod b_i$
Effort	f = gh	F = GBH
Effort delay	f	$D_F = \sum f_i$
Number of stages	1	N
Parasitic delay	$oldsymbol{ ho}$ (seeTable 2)	$P = \sum p_i$
Delay	d = f + p	$D = D_F^+ P$

Sutherland, Sproull Harris