SOC DESIGN VERIFICATION

DESIGN FOR VERIFICATION

- Principle of locality
- Plan before design starts
- Testbenches should reflect the system
 environment
- Best strategy
 - Bottom-up verification
 - Challenges: developing testbench
 - Solution
 - Macros with clean, well-designed interface
 - High level verification languages + code coverage tool

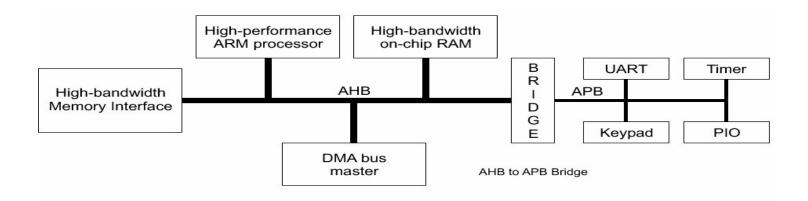
System Interconnection

- Tri-state bus is not good
 - Bus contention problem
 - Reduce reliability
 - One and only one driver at a time
 - Harder for deep submicron design
 - Bus floating problem
 - Reduce reliability
 - Bus keeper
 - ATPG problem
 - FPGA prototyping problem
- Multiplexer-based bus is better

IP-TO-IP INTERFACE

- Direct connection (via FIFO)
 - Higher bandwidth
 - Redesign for different IP
 - Become unmanageable when the IP number increases
 - Only suitable for design connected to analog block, e.g.
 PHY

Bus-based


- Eliminate direct link
- Layered approach can offer higher bandwidth
- All IPs talk to bus only, thus only IP-to-bus problem
- The mainstream of current IP-based SOC integration
- Choose the standard bus whenever possible

ON-CHIP BUS (OCB)

ARM AMBA

- Advanced Microcontroller Bus Architecture
- Dominant player
- V 3.0 is on the road
- Available solution
 - Synopsys DW_AMBA, ...
- Sonics OCP
- VSIA OCB 2.1
- WishBone Silicore
- IBM CoreConnect

AMBA BUS SYSTEM

AMBA Advanced High-performance Bus (AHB)

- * High performance
- * Pipelined operation
- * Burst transfers
- * Multiple bus masters
- * Split transactions

AMBA Advanced Peripheral Bus (APB)

- * Low power
- * Latched address and control
- * Simple interface
- * Suitable for many peripherals