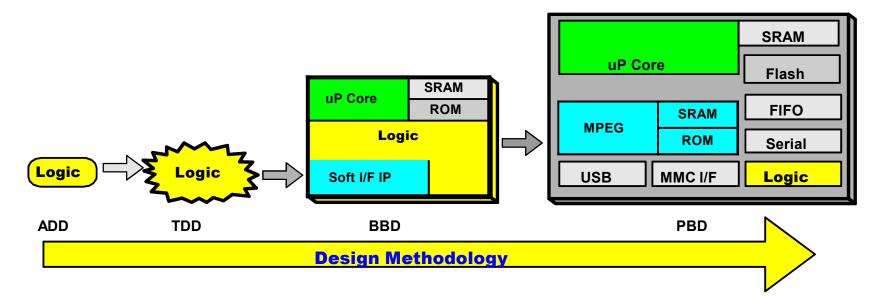


SOC DESIGN CHARACTERISTICS

- Design Level
 - RTL / Behavioral > Architectural / VC Evaluation
- Design Team
 - Small, Focused > Multidisciplinary> Multi-Group, Multidisciplinary
- Primary Design
 - Custom Logic > Blocks, Custom Interface > Interface to System / Bus
- Design Reuse
 - Opportunistic Soft, Firm and Hard > Planned Firm and Hard
- Optimization Focus
 - Synthesis, Gate-level > Floor planning, Block Architecture > System
 Architecture

SOC TEST CHARACTERISTICS


- Test Architecture
 - Scan/JTAG/BIST/Custom
 - > Hierarchical, Parallel scan/JTAG/BIST/custom
- Bus Architecture
 - Custom > Standardized / Multiple app-specific
- Verification Level
 - Gate/RTL > Bus functional/RTL/Gate
- > Mixed (ISS to RTL with H/W and S/W)
- Partitioning Focus
 - Synthesis limitation > Functions / Communication

SOC LAYOUT CHARACTERISTICS

- Placement
 - Flat > Flat with limited hierarchical > Hierarchical
- Routing
 - Flat > Flat with limited hierarchical > Hierarchical
- Timing
 - Flat > Flat with limited hierarchical > Hierarchical
- Physical Verification
 - Flat > Flat with limited hierarchical > Hierarchical

Transition of SoC Design Methodology

- From area-driven to timing-driven design
- From block-based to platform-based design

SoC Design Methodology

- Transition of Design Methodology
 - ADD > TDD > BBD > PBD
- Reuse-the key to SoC design
 - Personal > Source > Core > Virtual Component
- Integration approach
 - IP-Centric vs. Integration-Centric Approach
- SoC and productivity
 - Executable specification
 - Test automation
 - Real-world stimuli
 - Higher-level algorithmic system modeling