Digital to Analog(D/A) conversion

- A digital to analog converter (DAC) converts a digital signal to an analog signal in form of voltage or current.
- Two methods:
 - Binary Weighted Resistor method and
 - R-2R Ladder

Binary Weighted Resistor method

- Depending upon the digital input bit Logic circuit performs switching of resistor networks between Vref and ground.
- Transistors are used to switch between V_{ref} and ground (bit high or low)
- weighted resistors are used to distinguish each bit from the MSB to LSB.

Contd...

Resistors are connected to V_{ref} if corresponding bit is high or ground if corresponding bit is low

The output voltage is,

$$E_{\rm o} = I_{\rm f} R_{\rm f}$$

If R is connected to Er,

$$E_{\rm o} = \frac{E_{\rm r} R_{\rm f}}{R}$$

The general expression is,

For a code of 1001

$$E_{\rm o} = I_{\rm f} R_{\rm f} = \left(\frac{a_0}{R} + \frac{a_1}{2R} + \frac{a_2}{4R} + \Lambda + \frac{a_{\rm n-1}}{2^{\rm n-1}R}\right) R_{\rm f} E_{\rm r}$$

Binary Weighted Resistor

- Advantages
 - Simple Construction/Analysis
 - Fast Conversion
- Disadvantages
 - A 10 bit DAC needs resistors ranging from R to R/1024.
 - Requires low switch resistances in transistors
 - Can be expensive. Therefore, usually limited to 8-bit resolution.