Combinational vs. Sequential Logic

Sequential

$$
\text { Output }=f(I n)
$$

Static CMOS Circuit

At every point in time (except during the switching transients) each gate output is connected to either $V_{D D}$ or $V_{s s}$ via a low-resistive path.
The outputs of the gates assume at all times the value of the Boolean function, implemented by the circuit (ignoring, once again, the transient effects during switching periods).
This is in contrast to the dynamic circuit class, which relies on temporary storage of signal values on the capacitance of high impedance circuit nodes.

Static Complementary CMOS

PUN and PDN are dual logic networks

NMOS Transistors in Series/Parallel Connection

Transistors can be thought as a switch controlled by its gate signal NMOS switch closes when switch control input is high
$X \underset{\sim}{1} \frac{1}{1} L \quad Y=X$ if A and B

$$
x-\frac{1}{\frac{1}{4}}
$$

$$
Y=X \text { if } A \text { OR B }
$$

NMOS Transistors pass a "strong" 0 but a "weak" 1

PMOS Transistors in Series/Parallel Connection

PMOS switch closes when switch control input is low

$$
Y=X \text { if } \bar{A} O R \bar{B}=\overline{A B}
$$

PMOS Transistors pass a "strong" 1 but a "weak" 0

Threshold Drops

PDN

Complementary CMOS Logic Style

- PUP is the DUAL of PDN
(can be shown using DeMorgan's Theorem's)

$$
\begin{aligned}
& \overline{A+B}=\bar{A} \bar{B} \\
& \overline{A B}=\bar{A}+\bar{B}
\end{aligned}
$$

- The complementary gate is inverting

$$
\mathbf{A N D}=\mathbf{N A N D}+\mathbf{I N V}
$$

Example Gate: NAND

PDN: $G=A B \quad$ B \quad Conduction to GND
PUN: $F=\overline{\mathbf{A}}+\overline{\mathbf{B}}=\overline{\mathbf{A B}} \Rightarrow$ Conduction to V_{DD}
$G\left(I n_{1}, I n_{2}, I n_{3}, \ldots\right) \equiv F\left(\overline{I n_{1}}, \overline{I n_{2}}, \overline{I n_{3}}, \ldots\right)$

Example Gate: NOR

Complex CMOS Gate

Constructing a Complex Gate

(a) pull-down network

(b) Deriving the pull-up network hierarchically by identifying sub-nets

(c) complete gate

Cell Design

\square Standard Cells

- General purpose logic
- Can be synthesized
- Same height, varying width
- Datapath Cells
- For regular, structured designs (arithmetic)
- Includes some wiring in the cell
- Fixed height and width

Standard Cell Layout Methodology 1980s

Standard Cell Layout Methodology 1990s

Mirrored Cell

Standard Cells

Standard Cells

Standard Cells

2-input NAND gate

Combinational Circuits

Combinational vs. Sequential Logic

Sequential

$$
\text { Output }=f(I n)
$$

Static CMOS Circuit

At every point in time (except during the switching transients) each gate output is connected to either $V_{D D}$ or $V_{s s}$ via a low-resistive path.
The outputs of the gates assume at all times the value of the Boolean function, implemented by the circuit (ignoring, once again, the transient effects during switching periods).
This is in contrast to the dynamic circuit class, which relies on temporary storage of signal values on the capacitance of high impedance circuit nodes.

Static Complementary CMOS

PUN and PDN are dual logic networks

NMOS Transistors in Series/Parallel Connection

Transistors can be thought as a switch controlled by its gate signal NMOS switch closes when switch control input is high
$X \underset{\sim}{1} \frac{1}{1} L \quad Y=X$ if A and B

$$
x-\frac{1}{\frac{1}{4}}
$$

$$
Y=X \text { if } A \text { OR B }
$$

NMOS Transistors pass a "strong" 0 but a "weak" 1

PMOS Transistors in Series/Parallel Connection

PMOS switch closes when switch control input is low

$$
Y=X \text { if } \bar{A} O R \bar{B}=\overline{A B}
$$

PMOS Transistors pass a "strong" 1 but a "weak" 0

Threshold Drops

PDN

Complementary CMOS Logic Style

- PUP is the DUAL of PDN
(can be shown using DeMorgan's Theorem's)

$$
\begin{aligned}
& \overline{A+B}=\bar{A} \bar{B} \\
& \overline{A B}=\bar{A}+\bar{B}
\end{aligned}
$$

- The complementary gate is inverting

$$
\mathbf{A N D}=\mathbf{N A N D}+\mathbf{I N V}
$$

Example Gate: NAND

PDN: $G=A B \quad$ B \quad Conduction to GND
PUN: $F=\overline{\mathbf{A}}+\overline{\mathbf{B}}=\overline{\mathbf{A B}} \Rightarrow$ Conduction to V_{DD}
$G\left(I n_{1}, I n_{2}, I n_{3}, \ldots\right) \equiv F\left(\overline{I n_{1}}, \overline{I n_{2}}, \overline{I n_{3}}, \ldots\right)$

Example Gate: NOR

Complex CMOS Gate

Constructing a Complex Gate

(a) pull-down network

(b) Deriving the pull-up network hierarchically by identifying sub-nets

(c) complete gate

Cell Design

\square Standard Cells

- General purpose logic
- Can be synthesized
- Same height, varying width
- Datapath Cells
- For regular, structured designs (arithmetic)
- Includes some wiring in the cell
- Fixed height and width

Standard Cell Layout Methodology 1980s

Standard Cell Layout Methodology 1990s

Mirrored Cell

Standard Cells

Standard Cells

Standard Cells

2-input NAND gate

Combinational Circuits

