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Sub-Threshold
Current

Drain Junction
Leakage

Sub-threshold current one of most compelling issues
in low-energy circuit design!



ReverseReverse--Biased Diode LeakageBiased Diode Leakage

N
p+ p+

Reverse Leakage Current

GATE
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+

-
Vdd

IDL = JS  A

JS = 10-100 pA/mm2  at 25 deg C for  0.25mm CMOS
JS doubles for every 9 deg C!



Subthreshold Leakage ComponentSubthreshold Leakage Component
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Static Power ConsumptionStatic Power Consumption

Vin=5V

Vout

CL

Vdd

Istat
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Pstat = P(In=1).Vdd . Istat

Wasted energy …
Should be avoided in almost all  cases,
but could help reducing energy in others (e.g. sense amps)



Principles for Power ReductionPrinciples for Power Reduction

Prime choice: Reduce voltage!
 Recent years have seen an acceleration in 

supply voltage reduction

 Design at very low voltages still open 
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question (0.6 … 0.9 V by 2010!)

Reduce switching activity

Reduce physical capacitance
 Device Sizing: for F=20

– fopt(energy)=3.53, fopt(performance)=4.47



Impact ofImpact of
Technology Technology 
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Technology Technology 
ScalingScaling



Goals of Technology ScalingGoals of Technology Scaling

Make things cheaper:
 Want to sell more functions (transistors) 

per chip for the same money

 Build same products cheaper, sell the 
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 Build same products cheaper, sell the 
same part for less money

 Price of a transistor has to be reduced

But also want to be faster, smaller, 
lower power



Technology ScalingTechnology Scaling

 Goals of scaling the dimensions by 30%:
 Reduce gate delay by 30% (increase operating 

frequency by 43%)

 Double transistor density
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 Double transistor density

 Reduce energy per transition by 65% (50% power 
savings @ 43% increase in frequency

 Die size used to increase by 14% per 
generation

 Technology generation spans 2-3 years



Technology GenerationsTechnology Generations
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Technology Evolution (2000 data)Technology Evolution (2000 data)

International Technology Roadmap for Semiconductors

180

1999 2000

30406090130
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Node years: 2007/65nm, 2010/45nm, 2013/33nm, 2016/23nm



Technology Evolution (1999)Technology Evolution (1999)
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ITRS Technology Roadmap ITRS Technology Roadmap 
Acceleration ContinuesAcceleration Continues
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Technology Scaling (1)Technology Scaling (1)
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Minimum Feature SizeMinimum Feature Size
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Technology Scaling (2) Technology Scaling (2) 
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Number of components per chipNumber of components per chip



Technology Scaling (3)Technology Scaling (3)

tp decreases by 13%/year
50% every 5 years!
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Propagation DelayPropagation Delay



Technology Scaling (4)Technology Scaling (4)
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(a) Power dissipation vs. year.
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(b) Power density vs. scaling factor.

From Kuroda



Technology Scaling Models Technology Scaling Models 

• Full Scaling (Constant Electrical Field)

ideal model — dimensions and voltage scale
together by the same factor S
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• Fixed Voltage Scaling

• General Scaling

most common model until recently —
only dimensions scale, voltages remain constant

most realistic for todays situation —
voltages and dimensions scale with different factors



Scaling Relationships for Long Channel DevicesScaling Relationships for Long Channel Devices
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Transistor ScalingTransistor Scaling
(velocity(velocity--saturated devices)saturated devices)
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mmProcessor ScalingProcessor Scaling
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P.Gelsinger: mProcessors for the New Millenium, ISSCC 2001



mmProcessor PowerProcessor Power

© Digital Integrated Circuits2nd Inverter

P.Gelsinger: mProcessors for the New Millenium, ISSCC 2001



mmProcessor PerformanceProcessor Performance
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P.Gelsinger: mProcessors for the New Millenium, ISSCC 2001



2010 Outlook2010 Outlook

 Performance 2X/16 months
 1 TIP (terra instructions/s)
 30 GHz clock

 Size
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 Size
 No of transistors: 2 Billion
 Die: 40*40 mm

 Power
 10kW!!
 Leakage: 1/3 active Power

P.Gelsinger: mProcessors for the New Millenium, ISSCC 2001 



Some interesting questionsSome interesting questions

What will cause this model to break?

When will it break?

Will the model gradually slow down?
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Will the model gradually slow down?
 Power and power density

 Leakage

 Process Variation


