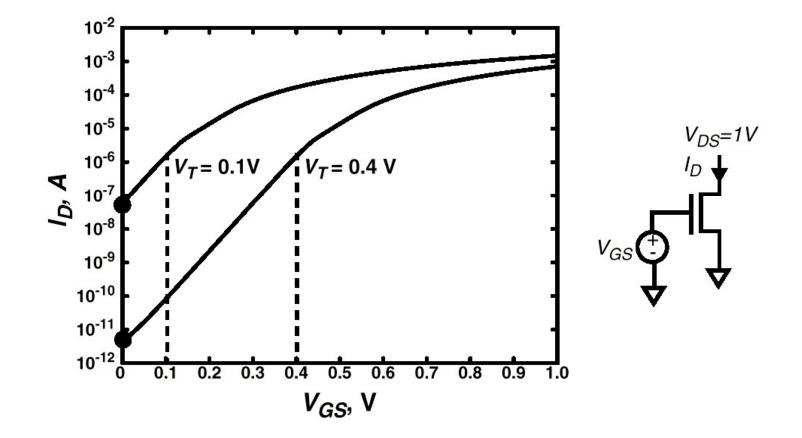

Leakage

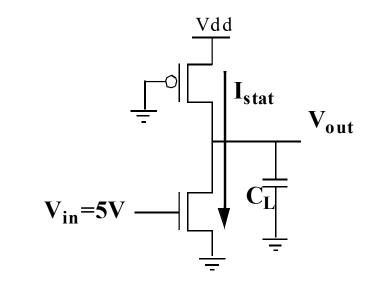
Sub-threshold current one of most compelling issues in low-energy circuit design!

© Digital Integrated Circuits^{2nd}


Reverse-Biased Diode Leakage

 $JS = 10-100 \text{ pA}/\mu\text{m2}$ at 25 deg C for $0.25\mu\text{m}$ CMOS JS doubles for every 9 deg C!

© Digital Integrated Circuits^{2nd}


Subthreshold Leakage Component

Leakage control is critical for low-voltage operation

© Digital Integrated Circuits^{2nd}

Static Power Consumption

 $P_{stat} = P_{(In=1)} V_{dd} I_{stat}$

Wasted energy ... Should be avoided in almost all cases, but could help reducing energy in others (e.g. sense amps)

© Digital Integrated Circuits^{2nd}

Principles for Power Reduction

□ Prime choice: Reduce voltage!

- Recent years have seen an acceleration in supply voltage reduction
- Design at very low voltages still open question (0.6 ... 0.9 V by 2010!)
- Reduce switching activity
- Reduce physical capacitance
 - Device Sizing: for F=20

 $-f_{opt}(energy)=3.53, f_{opt}(performance)=4.47$

Impact of Technology Scaling

© Digital Integrated Circuits^{2nd}

Goals of Technology Scaling

□ Make things cheaper:

- Want to sell more functions (transistors) per chip for the same money
- Build same products cheaper, sell the same part for less money
- Price of a transistor has to be reduced
- But also want to be faster, smaller, lower power

Technology Scaling

□ Goals of scaling the dimensions by 30%:

- Reduce gate delay by 30% (increase operating frequency by 43%)
- Double transistor density
- Reduce energy per transition by 65% (50% power savings @ 43% increase in frequency
- Die size used to increase by 14% per generation
- □ Technology generation spans 2-3 years

Technology Generations

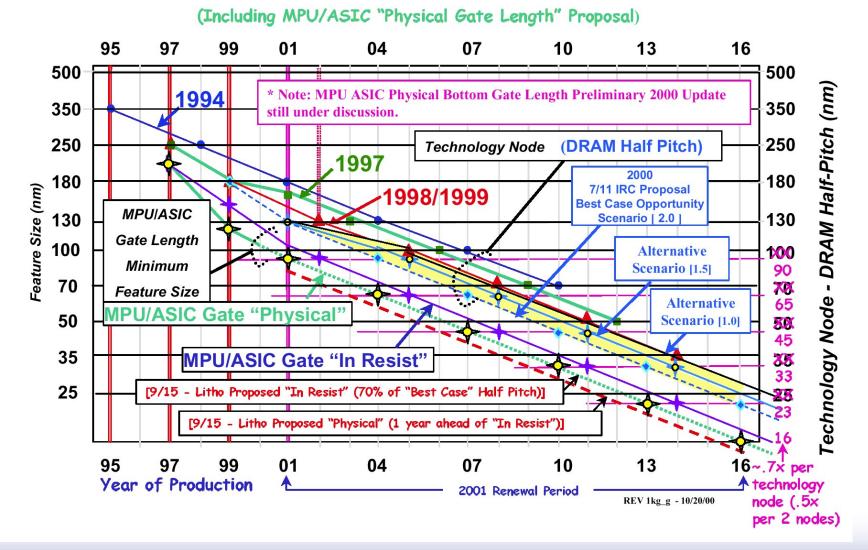
95	96	97	98	99	00	01	02	03	04	05	06	07	06	09
350 nm	1	2	з	4	5	100		12.6			Oat .		1.00	
-2	-1	250 nm	1	2	3	4	5							
-4	-3	ş	-1	180 rim	1	2	а	4	5		NONE		1	
-8	5	Ą	-3	-2	-1	150 nm	1	2	в	4	6		E CONT	
-8	-7	-6	-5	Ŧ	-3	-2	-1	130 nm	1	2	8	4	6	
-11	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	100	1	2	з

Technology Evolution (2000 data)

International Technology Roadmap for Semiconductors

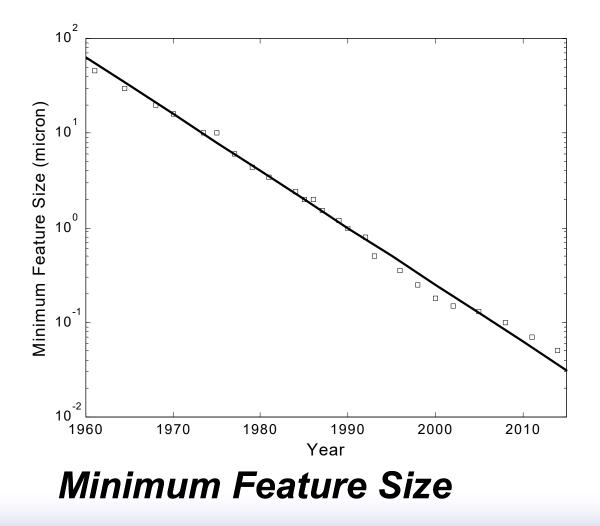
Year of Introduction	1999	2000	2001	2004	2008	2011	2014
Technology node [nm]	180		130	90	60	40	30
Supply [V]	1.5-1.8	1.5-1.8	1.2-1.5	0.9-1.2	0.6-0.9	0.5-0.6	0.3-0.6
Wiring levels	6-7	6-7	7	8	9	9-10	10
Max frequency [GHz],Local-Global	1.2	1.6-1.4	2.1-1.6	3.5-2	7.1-2.5	11-3	14.9 -3.6
Max μP power [W]	90	106	130	160	171	177	186
Bat. power [W]	1.4	1.7	2.0	2.4	2.1	2.3	2.5

Node years: 2007/65nm, 2010/45nm, 2013/33nm, 2016/23nm

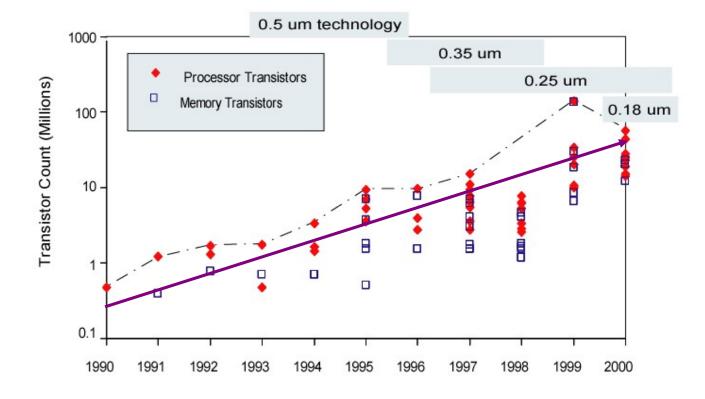

© Digital Integrated Circuits^{2nd}

Technology Evolution (1999)

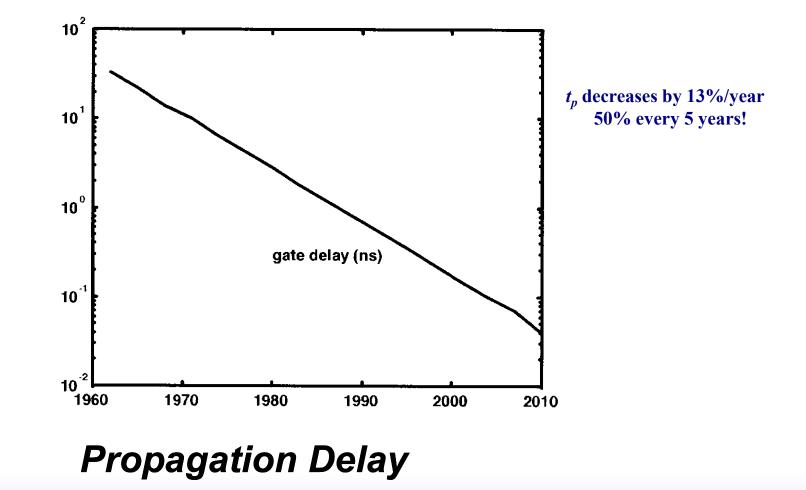
Year of Introduction	1994	199 7	2000	2003	2006	2009
Channel length (µm)	0.4	0.3	0.25	0.18	0.13	0.1
Gate oxide (nm)	12	7	6	4.5	4	4
V_{DD} (V)	3.3	2.2	2.2	1.5	1.5	1.5
$V_T(\mathbf{V})$	0.7	0.7	0.7	0.6	0.6	0.6
NMOS I_{Dsat} (mA/µm) (@ $V_{GS} = V_{DD}$)	0.35	0.27	0.31	0.21	0.29	0.33
PMOS I_{Dsat} (mA/µm) (@ $V_{GS} = V_{DD}$)	0.16	0.11	0.14	0.09	0.13	0.16


•

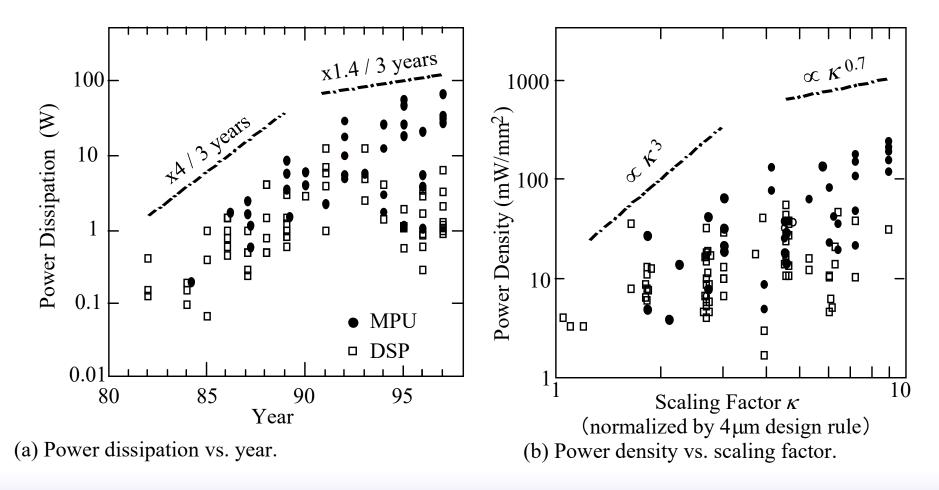
ITRS Technology Roadmap Acceleration Continues


© Digital Integrated Circuits^{2nd}

Technology Scaling (1)


© Digital Integrated Circuits^{2nd}

Technology Scaling (2)


Number of components per chip

Technology Scaling (3)

© Digital Integrated Circuits^{2nd}

Technology Scaling (4)

From Kuroda

© Digital Integrated Circuits^{2nd}

Technology Scaling Models

• Full Scaling (Constant Electrical Field)

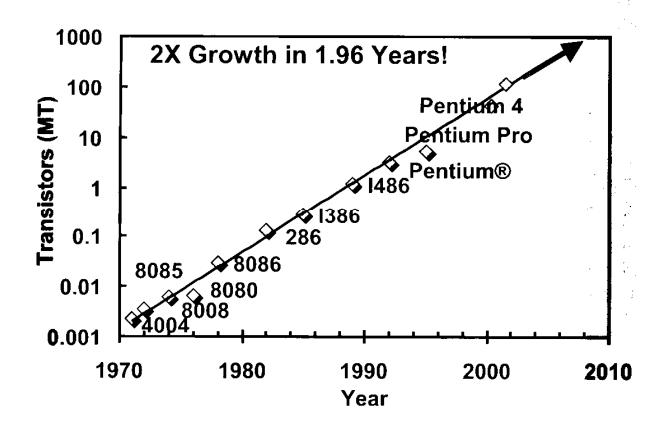
ideal model — dimensions and voltage scale together by the same factor S

Fixed Voltage Scaling

most common model until recently — only dimensions scale, voltages remain constant

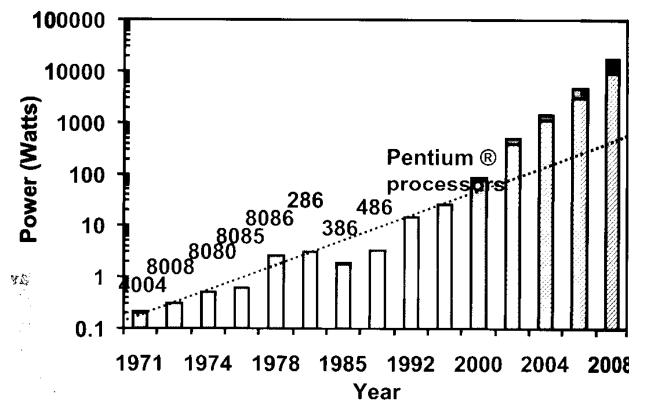
General Scaling

most realistic for todays situation — voltages and dimensions scale with different factors

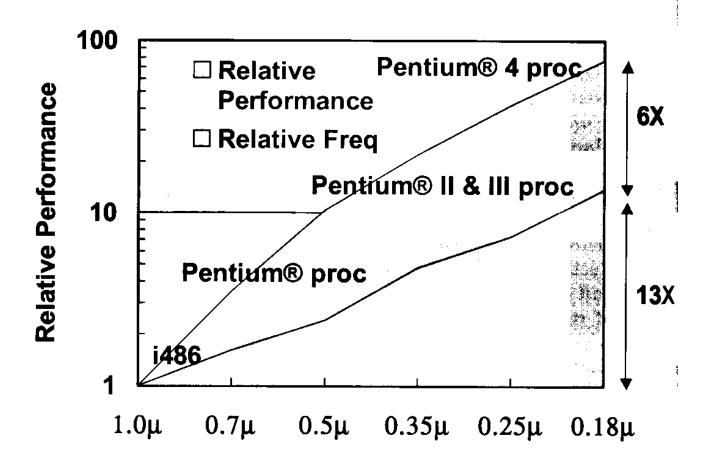

Scaling Relationships for Long Channel Devices

Parameter	Relation	Full Scaling	General Scaling	Fixed Voltage Scaling
W, L, t _{ox}		1/S	1/S	1/S
V _{DD} , V _T		1/S	1/U	1
N _{SUB}	V/W _{depl} ²	S	S ² /U	S ²
Area/Device	WL	1/S ²	1/S ²	1/S ²
Cox	1/t _{ox}	S	S	S
CL	C _{ox} WL	1/S	1/S	1/S
k _n , k _p	C _{ox} W/L	S	S	S
I _{av}	$k_{n,p} V^2$	1/S	S/U ²	S
t _p (intrinsic)	C _L V / I _{av}	1/S	U/S ²	1/S ²
Pav	$\frac{C_L V^2 / t_p}{C_L V^2}$	1/S ²	S/U ³	S
PDP	$C_L V^2$	1/S ³	$1/\mathrm{SU}^2$	1/S

Transistor Scaling (velocity-saturated devices)


Parameter	Relation	Full Scaling	General Scaling	Fixed-Voltage Scaling	
<i>W</i> , <i>L</i> , <i>t</i> _{ox}		1/S	1/S	1/S	
V_{DD} V_T		1/S	1/U	1	
N_{SUB}	V/W_{depl}^2	S	S^2/U	S^2	
Area/Device	WL	$1/S^2$	$1/S^2$	$1/S^2$	
C _{ox}	$1/t_{ox}$	S	S	S	
C_{gate}	$C_{ox}WL$	1/S	1/S	1/S	
k_{n} k_{p}	C _{ox} W/L	S	S	S	
I _{sat}	$C_{ox}WV$	1/S	1/U	1	
Current Density	I _{sat} /Area	S	S^2/U	S^2	
Ron	V/I _{sat}	1	1	1	
Intrinsic Delay	$R_{on}C_{gate}$	1/S	1/S	1/S	
Р	$I_{sat}V$	$1/S^2$	$1/U^2$	1	
Power Density	P/Area	1	S^2/U^2	S^2	

μ**Processor Scaling**


P.Gelsinger: µProcessors for the New Millenium, ISSCC 2001

μ**Processor Power**

P.Gelsinger: μ Processors for the New Millenium, ISSCC 2001

μ**Processor Performance**

P.Gelsinger: µProcessors for the New Millenium, ISSCC 2001

2010 Outlook

□ Performance 2X/16 months

- 1 TIP (terra instructions/s)
- 30 GHz clock
- □ Size
 - No of transistors: 2 Billion
 - Die: 40*40 mm
- Power
 - 10kW!!
 - Leakage: 1/3 active Power

P.Gelsinger: μ Processors for the New Millenium, ISSCC 2001

Some interesting questions

What will cause this model to break?
When will it break?

□ Will the model gradually slow down?

- Power and power density
- Leakage
- Process Variation