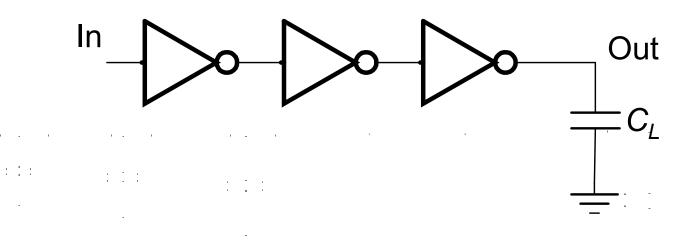


Inverter Sizing

© Digital Integrated Circuits^{2nd}



If C_L is given:

- How many stages are needed to minimize the delay?
- How to size the inverters?

May need some additional constraints.

Inverter Delay

- Minimum length devices, L=0.25µm
- Assume that for $W_P = 2W_N = 2W$
 - same pull-up and pull-down currents
 - approx. equal resistances $R_N = R_P$
 - approx. equal rise t_{pLH} and fall t_{pHL} delays
- Analyze as an RC network

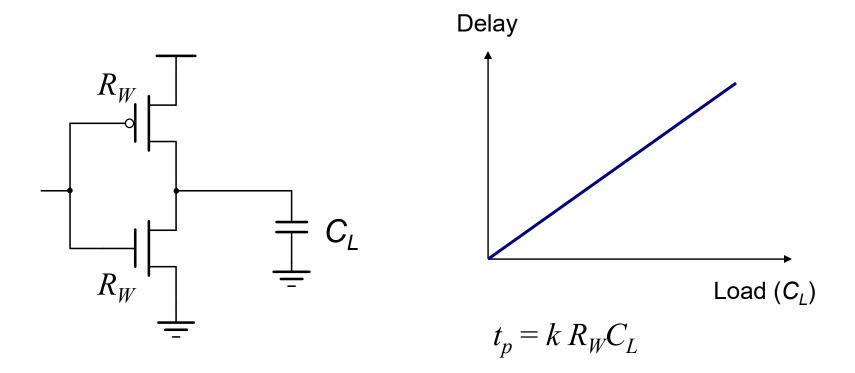
$$R_P = R_{unit} \left(\frac{W_P}{W_{unit}}\right)^{-1} \approx R_{unit} \left(\frac{W_N}{W_{unit}}\right)^{-1} = R_N = R_W$$

Delay (D):
$$t_{pHL} = (\ln 2) R_N C_L$$
 $t_{pLH} = (\ln 2) R_P C_L$

 $C_{gin} = 3 \frac{VV}{W} C_{unit}$

Load for the next stage: © Digital Integrated Circuits^{2nd}

Inverter with Load

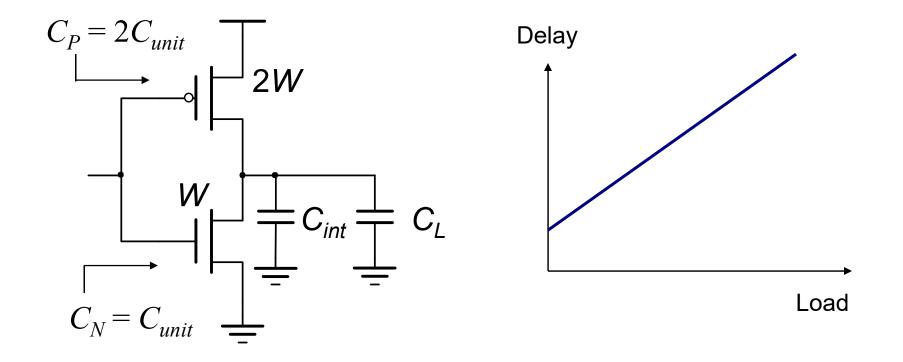


k is a constant, equal to 0.69 Assumptions: no load -> zero delay

$$W_{unit} = T$$

© Digital Integrated Circuits^{2nd}

Inverter with Load



Delay = $kR_W(C_{int} + C_L) = kR_WC_{int} + kR_WC_L = kR_WC_{int}(1 + C_L/C_{int})$ = Delay (Internal) + Delay (Load)

© Digital Integrated Circuits^{2nd}

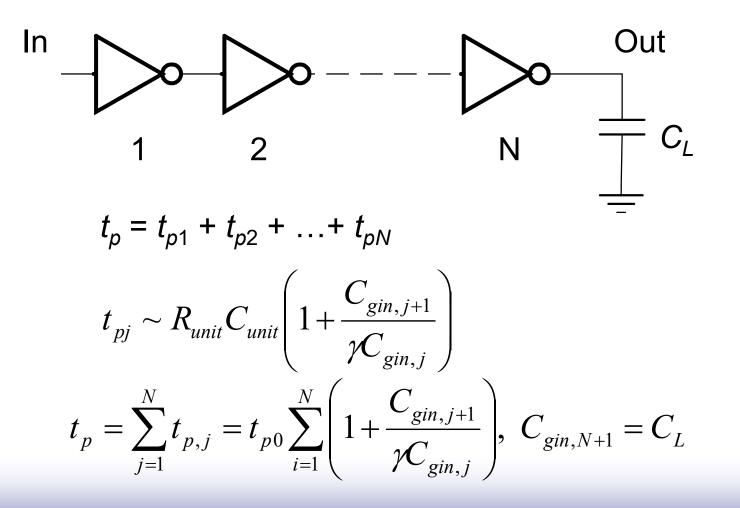
$$Delay \sim R_W \left(C_{int} + C_L \right)$$

$$t_{p} = kR_{W}C_{int}(1 + C_{L} / C_{int}) = t_{p0}(1 + f / \gamma)$$

$$C_{int} = \gamma C_{gin}$$
 with $\gamma \approx 1$
 $f = C_L / C_{gin}$ - effective fanout
 $R = R_{unit} / W$; $C_{int} = W C_{unit}$
 $t_{p0} = 0.69 R_{unit} C_{unit}$

© Digital Integrated Circuits^{2nd}

Apply to Inverter Chain



© Digital Integrated Circuits^{2nd}

Optimal Tapering for Given N

Delay equation has *N* - 1 unknowns, $C_{gin,2} - C_{gin,N}$

Minimize the delay, find N - 1 partial derivatives

Result:
$$C_{gin,j+1}/C_{gin,j} = C_{gin,j}/C_{gin,j-1}$$

Size of each stage is the geometric mean of two neighbors

$$C_{gin,j} = \sqrt{C_{gin,j-1}C_{gin,j+1}}$$

- each stage has the same effective fanout (C_{out}/C_{in})

- each stage has the same delay

Optimum Delay and Number of Stages

When each stage is sized by *f* and has same eff. fanout *f*:

$$f^N = F = C_L / C_{gin,1}$$

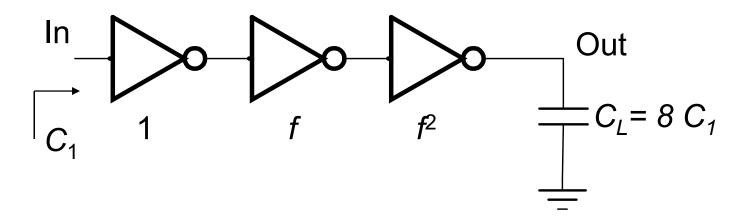
Effective fanout of each stage:

$$f = \sqrt[N]{F}$$

Minimum path delay

$$t_p = N t_{p0} \left(1 + \sqrt[N]{F} / \gamma \right)$$

© Digital Integrated Circuits^{2nd}



 C_L/C_1 has to be evenly distributed across N = 3 stages:

$$f = \sqrt[3]{8} = 2$$

© Digital Integrated Circuits^{2nd}

Optimum Number of Stages

For a given load, C_L and given input capacitance C_{in} Find optimal sizing f

$$C_{L} = F \cdot C_{in} = f^{N}C_{in} \text{ with } N = \frac{\ln F}{\ln f}$$

$$t_{p} = Nt_{p0} \left(F^{1/N} / \gamma + 1\right) = \frac{t_{p0} \ln F}{\gamma} \left(\frac{f}{\ln f} + \frac{\gamma}{\ln f}\right)$$

$$\frac{\partial t_{p}}{\partial f} = \frac{t_{p0} \ln F}{\gamma} \cdot \frac{\ln f - 1 - \gamma / f}{\ln^{2} f} = 0$$
For $\gamma = 0, f = e, N = \ln F$

$$f = \exp(1 + \gamma / f)$$

© Digital Integrated Circuits^{2nd}

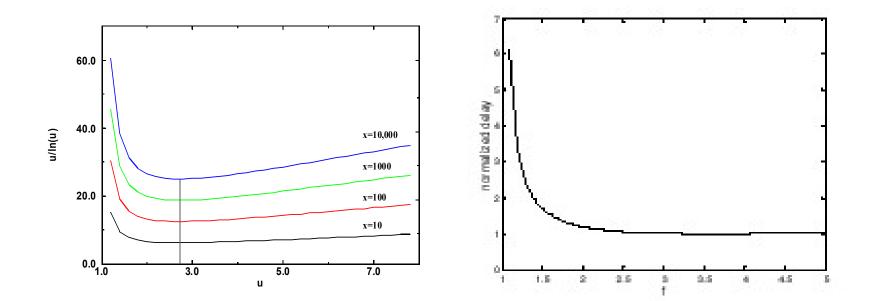
Optimum Effective Fanout f

Optimum *f* for given process defined by γ $f = \exp(1 + \gamma/f)$ $f_{opt} = 3.6$ for $\gamma = 1$ 4.5 J 3.5 2.51.5 0.52.51 2 Ð. ĊČ.

© Digital Integrated Circuits^{2nd}

Impact of Self-Loading on tp

No Self-Loading, γ =0



© Digital Integrated Circuits^{2nd}

Normalized delay function of F

$$t_p = N t_{p0} \left(1 + \sqrt[N]{F} / \gamma \right)$$

F	Unbuffered	Two Stage	Inverter Chain
10	11	8.3	8.3
100	101	22	16.5
1000	1001	65	24.8
10,000	10,001	202	33.1

Buffer Design

