## Common-Source stage with Kesistive load





- Very high input impedance at low frequencies
- For  $V_{in} < V_{TH}$ ,  $M_1$  is off and  $V_{out} = V_{DD}$

$$V_{out} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH})^2$$

- When  $V_{in} > V_{TH}$ ,  $M_1$  turns on in saturation region,  $V_{out}$  falls
- When  $V_{in} > V_{in1}$ ,  $M_1$  enters triode

$$V_{in1} - V_{TH} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in1} - V_{TH})^2$$
• June 1 out — in1 TH

## Common-Source stage with Kesistive load



$$V_{out} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left[ 2(V_{in} - V_{TH}) V_{out} - V_{out}^2 \right]$$



• If  $V_{in}$  is high enough to drive  $M_1$  into deep triode region so that

$$\begin{split} V_{out} &= V_{DD} \frac{R_{on}}{R_{on} + R_D} \\ &= \frac{V_{DD}}{1 + \mu_n C_{ox} \frac{W}{L} R_D (V_{in} - V_{TH})} \end{split}$$

## **Common-Source stage with kesistive** load

$$A_v = rac{\partial V_{out}}{\partial V_{in}}$$
 • Taking derivative of  $\emph{I}_D$  equation in saturation region, small-signal gain is obtained 
$$= -R_D \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH}) \quad \text{gain is obtained}$$
 
$$= -g_m R_D.$$



$$V_{out} = -g_m V_1 R_D = -g_m V_{in} R_D$$

•  $g_m$  and  $A_v$  vary for large input signal swings according to

$$g_m = \mu_n C_{ox}(W/L)(V_{GS} - V_{TH}).$$

This causes non-linearity

## **Common-Source stage with kesistive** load

• For large values of  $R_D$ , channel-length modulation of  $M_1$ becomes significant,  $V_{out}$  equation becomes

$$V_{out} = V_{DD} - R_D \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{in} - V_{TH})^2 (1 + \lambda V_{out})$$

Voltage gain is

$$A_v = -g_m \frac{r_O R_D}{r_O + R_D}$$

 Above result is also obtained from small-signal equivalent circuit

$$V_{\text{in}} \stackrel{+}{ } \stackrel{+}{ } \stackrel{-}{ } \stackrel{+}{ } \stackrel{+}{ } \stackrel{-}{ } \stackrel{+}{ } \stackrel{-}{ } \stackrel{$$

$$V_1 = V_{in}$$

$$g_m V_1(r_O || R_D) = -V_{out}$$

$$V_{out}/V_{in} = -g_m(r_O || R_D)$$