

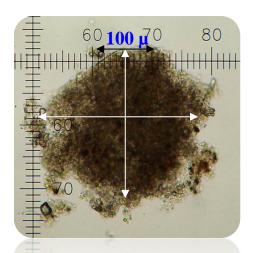
SHRIMP FARMING IN BIOFLOC SYSTEM: REVIEW AND RECENT DEVELOPMENTS

Nyan Taw, Ph.D.

Blue Archipelago Quality | Safety | Ecology FAO Project Consultant, Vietnam & Saudi Arabia Consultant, Blue Archipelago Berhad, Malaysia <u>nyan.taw@gmail.com</u> <u>nyan.taw@bluearchipelago.com</u>

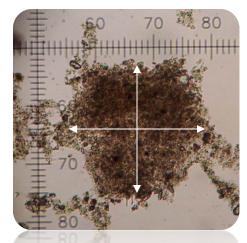
Adelaide Convention Centre, Adelaide, South Australia June 2014

INTRODUCTION


Biofloc, a very recent aquaculture technology seem a very promising for stable and sustainable production as the system has self-nitrification process within culture ponds with zero water exchange. Fish and shrimp use these microorganisms aggregated as additional feed source increases productivity, reduces FCR, possibly prevent diseases and consequently a sustainable production. Recently a book on biofloc technology was published by Yoram, et al (2012) (co-authored by Taw).

Biofloc technology initially known as bacteria floc was initiated in fish (tilapia) by Yoram in late 1980s and shrimp farming in Belize in late 1990s by McIntosh (1999 & 2000). The biofloc technology was scaled up to commercial scale since late 2002 (Taw et al, 2005, 2008, 2010 & 2014) in Indonesia and in Malaysia (Taw et al, 2010, 2011, 2012 & 2013). Semi-biofloc system has also been applied in earthen ponds with success *using P. monodon* (Smith 2008) *and L. vannamie* (Taw & Tun 2013). In Full biofloc system production can be as high as nearly 50 mt/hectare/cycle during R&D trials, however for commercial scale a production of 20-25 mt/ ha/ cycle is normal (Taw et al 2010,2011 & 2012). As from semi-biofloc a production of 15-16 mt/ha/ cycle can be achieved (Taw et at 2012 & 2013). Super-intensive biofloc system in raceways with *L. vannamei* are been studied by Moss (2006) and Samocha (2009) reaching to a production of 7.5 and 9.37 kg/m3 respectively. In fish (tilapia) production of between 20-40 kg/m3 in small concrete tanks can be expected. Presently, a number of studies by major universities and private companies to utilize biofloc as a single cell protein source in aquafeeds.

According In-Kwon (2012 & 2014) there were more than 2,000 bacterial species in well-developed biofloc water. This biofloc may enhance immune activity based on mRNA expression of six immune-related genes – ProPO1, ProPO2, PPAE, ran, mas and SP1. With emerging new viral diseases such as EMS/AHPND in Asia, a preventive solution with biofloc technology has become essential for sustainable production in shrimp farming.

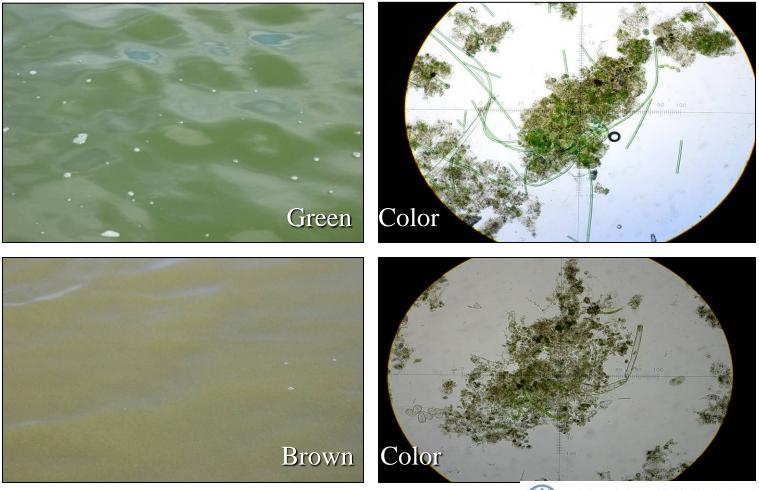

BIOFLOC

FLOC COMMUNITIES AND SIZE

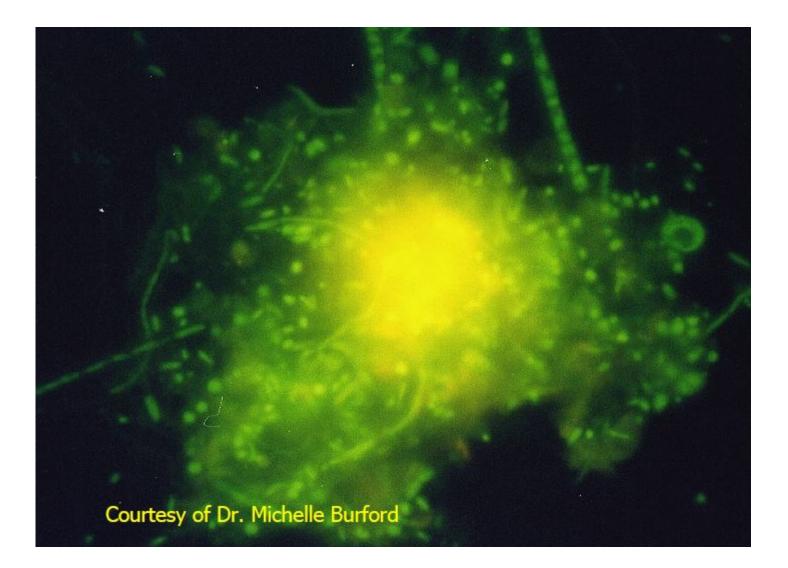
Green

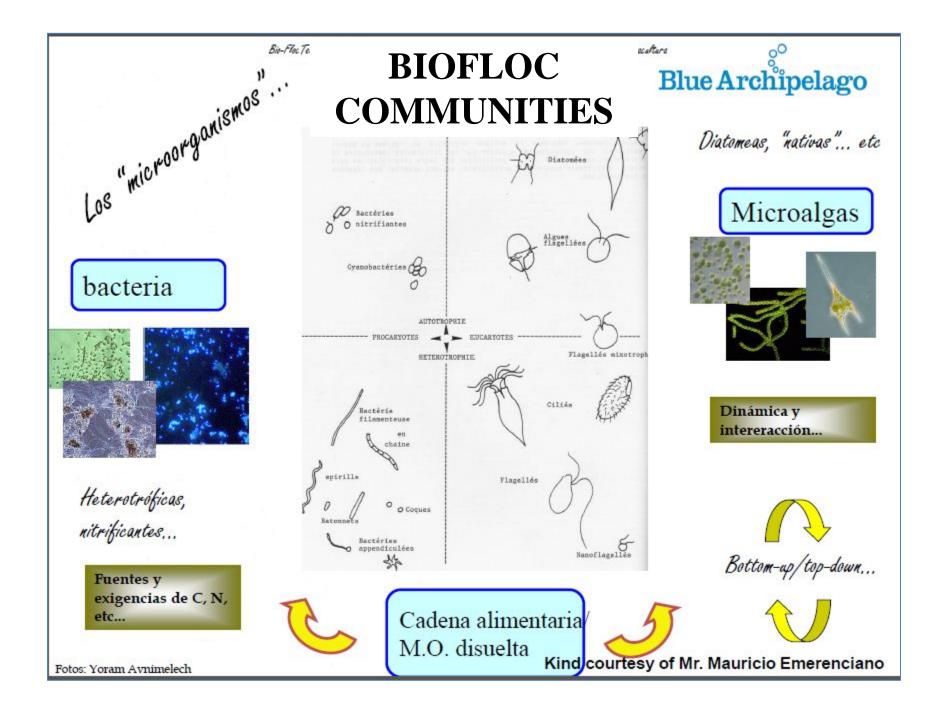
Brown

The biofloc

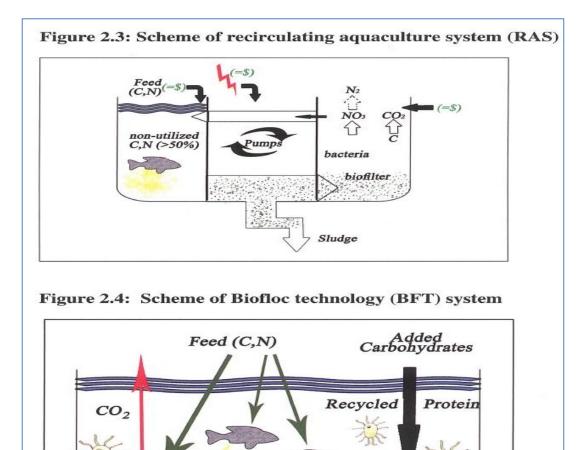

Defined as macroaggregates – diatoms, macroalgae, fecal pellets, exoskeleton, remains of dead organisms, bacteria, protest and invertebrates. (Decamp, O., *et al* 2002)

As Natural Feed (filter feeders – L. vannamie & Tilapia) : It is possible that microbial protein has a higher availability than feed protein (Yoram, 2005) Taw - Saudi JFRC Workshop 2014




BIOFLOC

Biofloc color in pond & under microscope



BIOFLOC TECHNOLOGY CONCEPT

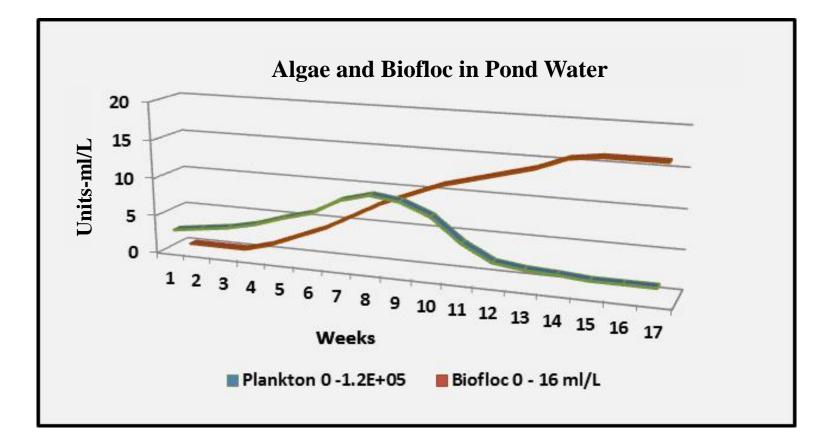
Biofloc technology is a system that has a self-nutrification process within culture pond water with zero water exchange (Yoram, 2012)

NO 3


Microbial Protein

Non Utilized

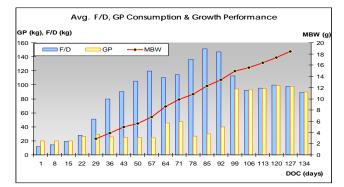
 C, NH_{4}


NITRIFICATION SEQUENCE

Nitrification sequence in BFT pond

Avnimelech et. at, 2012 (data from experimental pond Dor, Israel)

ALGAE TO BIOFLOC IN POND WATER


Development of biofloc system It may take a few weeks, depends on the biomass. First algae develop. Transition, foam formation then it get brown. Transition is fast with tilapia, longer with shrimp

Add carbon if TAN is above ~2 mg/l

SHRIMP FARMING IN BIOFLOC SYSTEM

SUMMARY

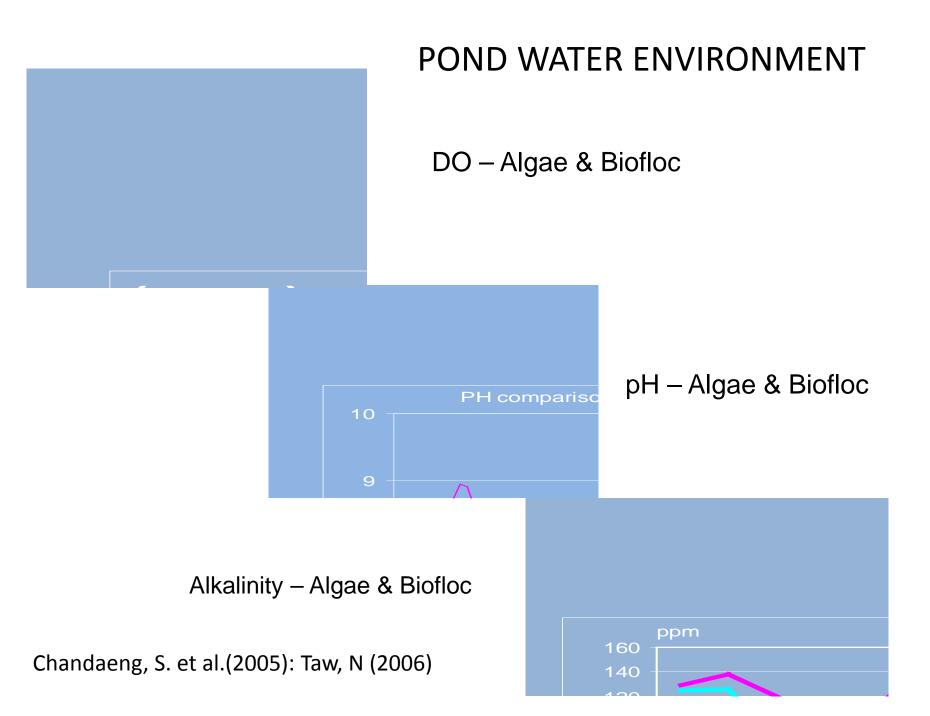
- 1. High stocking density over 130 150 PL10/m2 (80-100PL10/m2)
- 2. High aeration 28 to 32 HP/ha PWAs (20--24HP/ha)
- 3. Paddle wheel position in ponds (control biofloc & sludge by siphoning)
- 4. Biofloc control at <15 ml/L (<5 ml/L)
- 5. HDPE / Concrete lined ponds (Earthen ponds)
- 6. Grain (pellet)
- 7. Molasses
- C&N ratio >15 8
- Expected production 20-25 MT/ha/crop with 18-20 gms shrimp (13-16 MT/ha) 9

Feed & grain application & Growth

Grain pellet

Bioflocs

Dark Vannamei



Red Vannamei

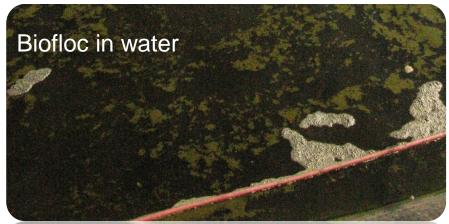
SHRIMP FARMS PERFORMANCE (McIntosh 2000 b & c)

BELIZE SHRIMP FARM (McIntosh, 2000b&c)

L. vannamei Mexican strain Pond size 1.6 hectare Pond type Fully HDPE lined Aeration input 48 HP of PWA System Heterotrophic zero water exchange Production 13,500 kg/ha/crop Carrying capacity 550 kg shrimp/HP of PWAs

Belize Aqua Ltd - ponds

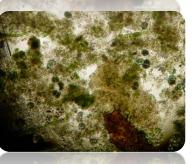
PERFORMANCE First Commercial Trail in Indonesia


Saenphon C. & Nyan Taw (WAS, Bali 2005) Nyan Taw (AA, L Vegas 2006)

	-			1200	-	
Description			Averag	je Per Code		
Fry Code	(12) A416	(12) A417	(12) A418	(11)A420	(12) A539,A416	Avg
Tot pond	5	6	2	5	3	26
STD(pcs/m ²)	131	131	130	131	131	131
DOC (day)	148	146	150	146	146	147
Biomass(kg)	11,337	10,587	10,650	10,886	11,256	10,883
MBW (g)	16.78	17.66	17. <u>61</u>	17.89	16.38	17.4
CV (%)	24.2	21.2_	26.8	—21.4	21.3	23.0
FCR (- GP)	1.01	1.09	1.08	1.03	0.98	1.04
FCR (+ GP)	1.69	1.83	1.82	1.70	1.64	1.73
SR (%)	100.0	91.6	92.8	92.8	105.0	95.9
ADG (g/day)	0.11	0.12	0.12	0.12	0.11	0.12
Prod (g/m ² /crop)	2,267	2,118	2,130	2,177	2,251	2,176

0.5 hectare ponds

BIOFLOC & PARTIAL HARVEST Medan, Indonesia


Nyan Taw, et al, GAA Sep/Oct 2008

Partial harvesting

Brown biofloc

Paddle wheels & air diffusers were kept in operation during partial harvest –maximum two hours with carrying still high Green biofloc

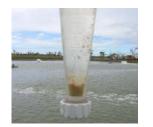
Nyan Taw. et al WAS 2009 Mexico

BIOFLOC AND PARTIAL HARVEST Medan, Indonesia

Pond/size	System	Energ	y Input	Density	Partial		Harve	est		Proc	duction	F	CR	SR	Energy Efficie	ency -kg/HP	
Pona/size	System	(Pond)	(Ha)	(M2)	Parliai	DoC	Biomas (Kg)	Size No/kg	MBW (gr)	Kg/Pd	Kg/Ha	GP	Feed	(%)	Std Capacity	Efficiency	
1	Phyto	16 (PW)		100	1	118	434	47	21.28				1.60	75.72	560*	720	
5896 m2		10 (PVV)	27 (PW)		Final	127	11,027	43	23.26	11,461	19,439	0	1.60	15.12	000	720	
2				145	1	108	2,092	59	16.95					84.07			
2	Bio Floc	18 (PW)	31 (PW)	145	2	121	1,016	55	18.18	13,508	22,910	0.59	1.20	04.07	680*	739	
5896 m2					Final	131	10,400	52	19.23								
3				146	1	109	2,108	56	17.86					80.95			
5	Bio Floc	18 (PW)	30 (PW)	140	2	122	999	50	20.00	14,386	24,219	0.56	1.14	00.35	680*	807	
5940 m2					Final	130	11,279	47	21.28								
4	Bio Floc	16 (PW)	34 (PW)	257	1	85	1,962	93	10.75								
4704 m2	DIOTIOC	10 (1 10)	54 (1 11)	2.57	2	99	1,896	75	13.33								
					3	113	1,871	62	16.13	17,963	38,229	0.58	1.12	86.54	680*	1,124	
					4	127	2,587	56	17.86	17,505	30,223	0.00				1,124	
					5	134	2,475	53	18.87								
					Final	155	7,192	47	21.28								
					1	84	924	86	11.63								
					2	99	1,455	74	13.51								
5	Bio Floc	9 (PW)	36 (PW)	280	3	113	1,324	61	16.39	12,371	49.484	0.48	1.11	102.35	680*	1,031	
2,500 m2		3 (BL)	12 (BL)		4	127	1,448	57	17.54	12,071	10,101	0.10		102.55		1,001	
					5	134	1,043	54	18.52								
					Final	155	6,177	50	20.00								
		7 (PW)	28 (PW)	145	1	110	1,166	51	19.61					86.35			
6	Bio Floc	3 (BL)	12 (BL)	1.10	2	124	367	49	20.41	6,545	26,180	0.50	1.10	00.00	680*	655	
2500 m2		- ()	,		Final	127	5,012	47	21.28								
		9 (PW)	36 (PW)	145	1	110	892	61	16.39								
7	Bio Floc	3 (BL)	12 (BL)	0.110	2	124	323	57	17.54	6,615	26,460	0.50	1.10	100.8	680*	551	
2500 m2			/		Final	130	5,400	54	18.52								
										82,849	29,560	0.53	1.13	88.1			

Partial Harvest Performance with Bio Floc Technology (February - July 2008)

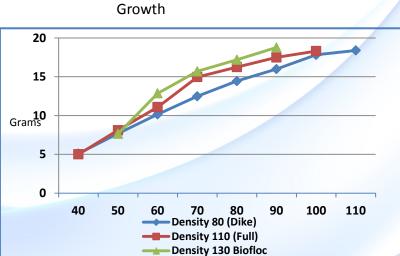
Nyan Taw, *et al*, GAA Sep/Oct2008 Nyan Taw *et al*, WAS 2009 Mexico


P. monodon CULTURED IN BIOFLOC

From:

David M. Smith, et al, 2008

Development of protocols for the culture of black tiger shrimp, *Penaeus monodon*, in "zero" water exchange production ponds


Can P. monodon be cultured in biofloc systems?

- Typical production in ponds with a stable floc and stocked with about 45 PL/m² was 10 to 12 t per hectare
- Target harvest weight 35 g
- FCRs when shrimp were 30 g was 1.3:1 (excluding molasses added to pond)

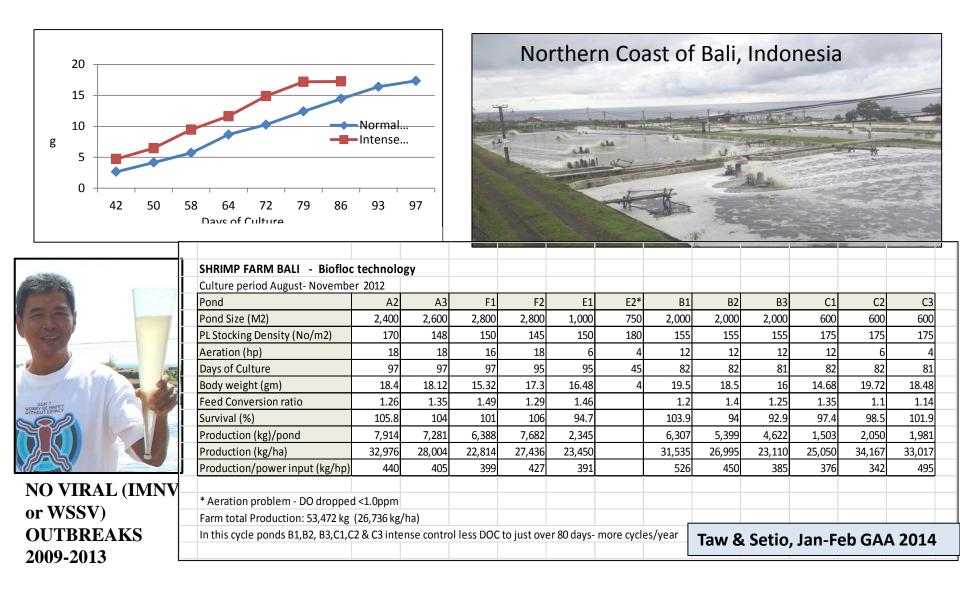
PERFORMANCE – BIOFLOC & SEMI BIOFLOC Acar Beru, Blue Archipelago, Malaysia

PRODUCTION PERFORMANCE OF ARCA BIRU FARM

Production Parameter	Syste		
	Biofloc 0.4 ha HDPE	Semi-Biofloc 0.8 ha HDPE	Conven 0.8 ha HDPE Dyke
No of Ponds	2	19	119
PWA Energy (Hp)	14	24	20
Stocking Density	130	110	83
DOC (days)	90	101	111
SR (%)	89.16	81.35	83.19
MBW (gr)	18.78	18.31	17.80
FCR (x)	1.39	1.58	1.77
ADG (gr/day)	0.21	0.18	0.16
Avg Harvest tonnage (kg)	9,006	12,950	9,616
Production (Kg/Ha)	22,514	16,188	12,019
Prod per power input (Kg/Hp)	643	540	481

Nyan Taw, et.al. GAA March/April 2011

ISHARP BLUE ARCHIPELAGO, MALAYSIA SEMI-BIOFLOC PERFORMANCE



Production Performance						
Production Parameter		CYCLE Trial - N	/lodules 1 & 2		CYCLE 1 - Mo	dules 1 & 2
Production Parameter	Density 40/m2	Density 60/m2	Density 80/m2	Density 130/m2	Density 100/m2	Density 100/m2
No of ponds	20	16	8 BFT	4 BFT*	24 BFT	24 BFT
Paddle Wheels Aerators (HP)	12	12	12	16	12	12
Days of Culture (DoC)	113	108	94	88	100	99
Survival Rate (%)	112.23	101.22	106.05	69.56	97.30	104.92
MBW (grams)	21.65	17.41	13.86	12.56	16.05	16.31
FCR	1.34	1.47	1.32	1.74	1.39	1.26
Average Production (kg/pond)	4,875	5,294	5,828	5,677	7,714	8,547
Average Production (kg/ha)	9,749	10,587	11,655	11,354	15,428	17,093
Prod per power Input (Kg/Hp)	406	441	486	355	643	712

Nyan Taw et. al. GAA Jan/Feb 2013

BIOFLOC IN BALI, INDONESIA

SHRIMP CULTURE - SEMI-BIOFLOC IN MYANMAR Earthen pond bedside Soft Shell Crab Farm

Table 1. Production performance	of	the	<i>P</i> .	vannamei	farm	trials	at
Kyauktan shrimp farming zone							

Pond no	Aeration				Production (kg/ha)	Carrying capacity (kg/hp)				
(All of 6,400 m ²)	(hp)	(m ²)	(70)			DOC Production (kg)		MBW (g)	(kg/lia)	(kg/hp)
A 1	16	91			1	90	2,643	10.0		
			-		Final	107	3,826	14.5		
			90.7	1.23	Total		6,469		10,107.8	631.8
A 2	16	83			1	90	2,760	10.0		
					Final	102	2,005	13.0		
			71.2	1.17	Total		4,765		7,445.0	465.3
A 3	16	93			1	89	2,430	10.0		
					Final	107	3,451	14.6		
			82.6	1.26	Total		5,881		9,189.0	574.2
B 1	16	98			1	82	2,570	10.0		
					Final	97	3,226	13.5		
			82.3		Total		5,796		9,056.0	566
B 2	16	95		-	1	83	3,026	9.2		
					Final	110	3,750	15.0		
			91.2	1.34	Total		6,776		10,588.0	661.8
B 3	16	98			1	84	1,700	9.4		
					2	97	2,328	12.7		
					Final	105	3,174	15.5		
			94.3	1.27	Total		7.202		11.253.0	703.3

Shrimp sampling

Two modules-earthen ponds: one module consisted of 1 reservoir and 3 production ponds

No viral outbreaks

L. vanamei Post Larvae imported from Thailand by Air

Taw & Tun, AquaAsia 2013

FISH (TILAPIA) IN BIOFLOC SYSTEM

Taw - Saudi JFRC Workshop 2014

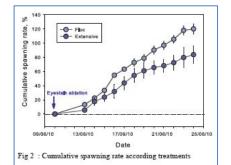
Implications:

- High Biomass 20-30 kg/m3
- High feeding (ca 500 g feed/m3 per day!)
- Very high microbial activity
- High floc volume (20-50 ml/l).
- Very high natural feed storage.
- High levels of feed residues
- Need to drain out daily (or twice daily) excessive sludge.
- Pond constructed to facilitate sludge draining and perfect mixing.
- High and effective aeration: 10-20 hp/1000 m2 pond

SHRIMP IN RACEWAYS & TANKS

BROODSTOCK, NURSERY, RACEWAYS & INDOOR COMMERCIAL PRODUCTION

Indoor tanks, raceways & broodstock culture, Indonesia



Indoor biofloc farm in Italy (Shrimp news International April 2012)

Broodstock farming trials New Caledonia (Chim et al 2011)

Description	Stocking Density (pcs/m²)				
	550	130			
Pond	2	2			
Initial MBW (g)	4.9	1.7			
Period (days)	57	90			
Harvest Biomass (kg)	374	151			
Final MBW (g)	13.8	18.4			
FCR	1.2	1.0			
Survival rate (%)	66	88			
ADG (g/day)	0.16	0.19			
Productivity (kg/m²)	5.2	2.1			
Productivity (kg/ha)	51,893	21,001			

UTILIZATION OF BFT Shrimp Broodstock, Nursery, Raceways, etc.

SUPER-INTENSIVE (RAS)

Ocean Institute, Hawaii, Moss (2006)

Stocking Density FCR Size Production

300 /m3 1.49 24.7 g 7.5 kg/m3

Texas A & M Univ. Samocha (2009)

Stocking Density	450 /m3
FCR	1.52
Size	22.36 g
Production	9.37 kg/m3

BIOFLOC AS DISEASE CONTROL

BIOFLOC MAY ENHANCE IMMUNE ACTIVITY

More than 2,000 bacterial species were found in well-developed biofloc water

Biolfocs may enhance immune activity, based on mRNA expression of six immune-related genes. ProPO1, proPO2, PPAE, ran, mas and SP1

From – In-Kwon Jang, IWA International Water Congress, 2012, Busan, Korea

BIOFLOC STUDIES IN MEXICO & BREZIL

Blue Archipelago

Bio-Floc experimental device (twenty-four 401 plastic tanks) Outdoor (six-teen 20,000l outdoor bio-floc lined tanks)

Bio-floc control

Indoor (Six 12,000l indoor bio-floc lined tanks)

UMDI, Sisal UNAM-México

Kind courtesy of Dr. Mauricio Emerenciano

BIOFLOC AS AQUAFEED PROTEIN SOURCE

Crude Protein – range 35-50% (Slightly deficient in arginine, lysine & methionine) Crude Lipid – range 0.6-12% High Ash – range 21-32 % (Conquest & Tacon, 2006)

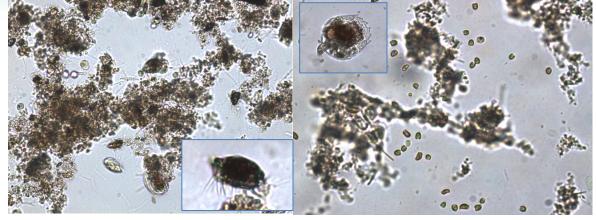
Tabela 2 – Composição Bromatológica com base na matéria seca de agregados microbianos formados em diferentes experimentos

Fonte	PB (%)	Carb (%)	EE (%)	FB (%)	Cinzas (%)
Mointosh et al (2000)	43.00		12,5		26,5
Tacon et al (2002)	31,20		2,6	•	28,2
Soares (2004)	12.0-42.0		2,0-8.0	-	22,0-46,0
Emerenciano et al (2006)	30,40	29,10*	0,47	0,83	39,20
Wasielesky et al (2006)	31,07	23,59	0,49	100	44,85

PB - proteína bruta; Carb. - carboidratos; EE - extrato etéreo ou lipídios; FB - fibra bruta

(Emerenciano et. al, 2012)




Figure 2 – Grazers often observed in BFT system such as ciliates protozoa (A), flagellates protozoa (B); nematodes (C) and copepods (D) (10x magnification) (Source: Emerenciano et al., 2012)

Composition of microbial flocs on dry matter basis, mean values with standard errors, as determined by laboratory analysis (n = 2).

Parameter	Microbial flocs
	[g/100 g]
Crude protein	49.0 ± 1.5
Carbohydrate ^a	36.4 ± 0.9
Total ash	13.4 ± 0.6
Crude fat	1.13 ± 0.09
Crude fiber	12.6 ± 0.1
Calcium	1.28 ± 0.07
Phosphorus	1.29 ± 0.08
Sodium	1.27 ± 0.03
Potassium	0.75 ± 0.13
Magnesium	0.41 ± 0.05
	[mg/kg]
Zinc	181±1
Copper	92.5 ± 3.0
Manganese	35.0 ± 0.5

^a Calculated value (Merrill and Watt, 1973): carbohydrate = 100 - (ash + crude protein + moisture + total fat).

(Kuhn, et. al, 2009)

iSHARP ponds biofloc, Malaysia

FUTURE OF BIOFLOC TECHNOLOGY

What Makes Bioflocs Great For Shrimp?

Kuhn, D.D, et. al, (2011)

Feeding trials conducted by Virginia Tech in partnership with Texas A & M University compared high-quality shrimp diets with and without bioflocs.

Shrimp grew 10 to 50% faster on diets that contained bioflocs compared to those without them.

Perspectives

Even though we have not yet identified what component of bioflocs accelerates shrimp growth, knowledge of what does not contribute can help us better understand shrimp nutrition and lead to innovative findings in the future.

From an industry standpoint, this is not as important as the demonstrated benefits that biofloc can offer. Bioflocs are advantageous because they are produced in a manner that is not only sustainable, but may also offer valuable water treatment options, resulting in an alternative ingredient to fishmeal in shrimp diets.

BIOFLOC BASIC MANAGEMENT CONCEPTS FOR SHRIMP CULTURE

Taw - Saudi JFRC Workshop 2014

- Semi-biofloc to Full biofloc system feasible 1
- 2 Use treated water only
- 3 Zero water exchange (only topping up)
- **Earthen to HDPE full or semi-lined ponds** 4
- 5 Aerators to have pond water (biofloc) in suspension (22-24 hrs)
- 6 **Correct aerators' position and number very important**
- 7 **Excess sludge need to be removed –specially for full biofloc**
- **Biofloc volume control (<5 15 ml/L)** 8
- Control C/N ratio to above >15 9
- 10 **Molasses & Grain pellet required (Carbon source)**
- **Operate in accordance with Carrying capacity of pond essential** 11 (species/stocking density/pond type/operating system)

Aquacultural Engineering Society Biofloc Technology Working Group

Workshop on Biofloc Technology and Shrimp Diseases

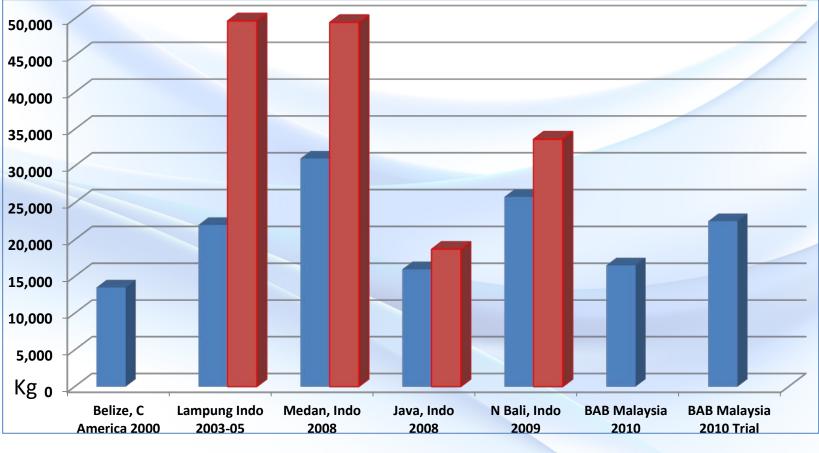
December 9-10 2013

Saigon Exhibition and Convention Center, District 7, HoChiMinh City, Vietnam

Summary

Workshop on Biofloc Technology and Shrimp Diseases Ho Chi Minh City, Vietnam, December 9, 2013,

To summarize this discussion, the main attributes of biofloc systems that reduce the risk of shrimp disease are:


- 1. Low rates of water exchange improve pathogen exclusion (biosecurity).
- 2. Continuous aeration provides stable water quality (DO and pH).
- 3. A diverse and stable microbial community stimulates the non-specific immune system and limits development of opportunistic species like Vibrio.
- 4. Regular removal of accumulated sludge controls biofloc concentration to moderate levels.

Biofloc/EMS Conference, December 2013-SHRIMP NEWS INTERNATIONAL 27 December 2013

ECOMOMICS OF BIOFLOC TECHNOLOGY

	BIOFLOC	AUTOTROPHIC	REMARKS Taw - Saudi JFRC Workshop 2014
Production (MT)	22 MT/ Ha	21 MT/ha	Increase in production = more profit
Growth (gms/day)	0.16 to 2.1	0.13 to 0.16	Larger shrimp size = better price
FCR	1.1 to 1.3	1.5 to 1.7	Lower FCR = lesser feed cost. FCR 0.1 = 3-4% of feed cost.
Biofloc as Protein source	Crude Protein - 35- 50%	none	Shrimp/fish consume biofloc. Biofloc can be harvested to replace protein in aqua feed.
DoC (Days of Culture)	90 -100 days	110-120 days	Less DoC = increase production cycles (eg from 2 to 2.5 cycles/ year. More revenue.
Energy Efficiency (HP)	650 – 1,100 Kg/HP	400 - 600 Kg/HP	More efficiency = less energy cost
Shrimp color (red)	Salmon scale > 28	Salmon scale < 24	Strong red = Better price
Stability	CV < 25 %	CV > 25 %	Lower CV = More productivity
Sustainability	Flush out < 1.5%	Flush out > 10 %	More sustainability = Higher production
Water exchange	Zero water exchange	Minimum or flow through	Energy saving in water pumping
Gross profit	> 35 %	< 30 %	The more the profit the better
Production Cost	< 15-20 % than Autotrophic	Standard Autotrophic	Less production cost = more profit
Feed Mill - production	Less sale but more sustainable sale	Normal sale	Feed mill should include grain pellet for biofloc with which sustainable sales could be secured.


BIOFLOC IN SHRIMP FARMING Production Performance

Commercial Kg/ha

Max Record Kg/ha

YouTube. <u>Aquaculture Prawn Farming: Water Purification Process</u>. Gavin Langley. June 2, 2014.

