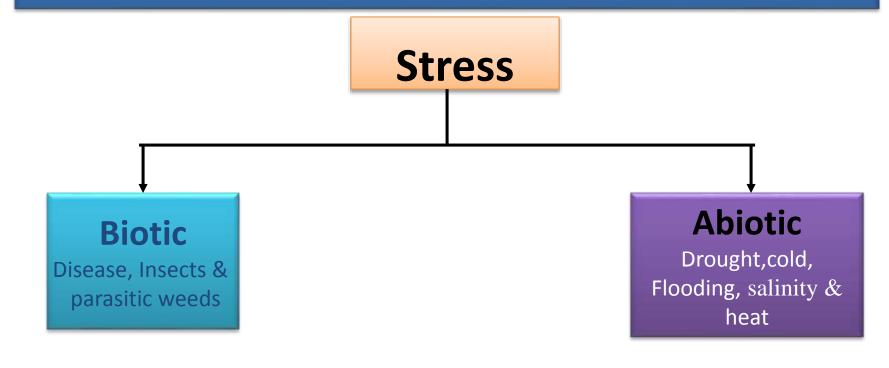
CSK HIMACHAL PRADESH KRISHI VISHVAVIDYALAYA

Drought Stress Effects and Breeding Strategies

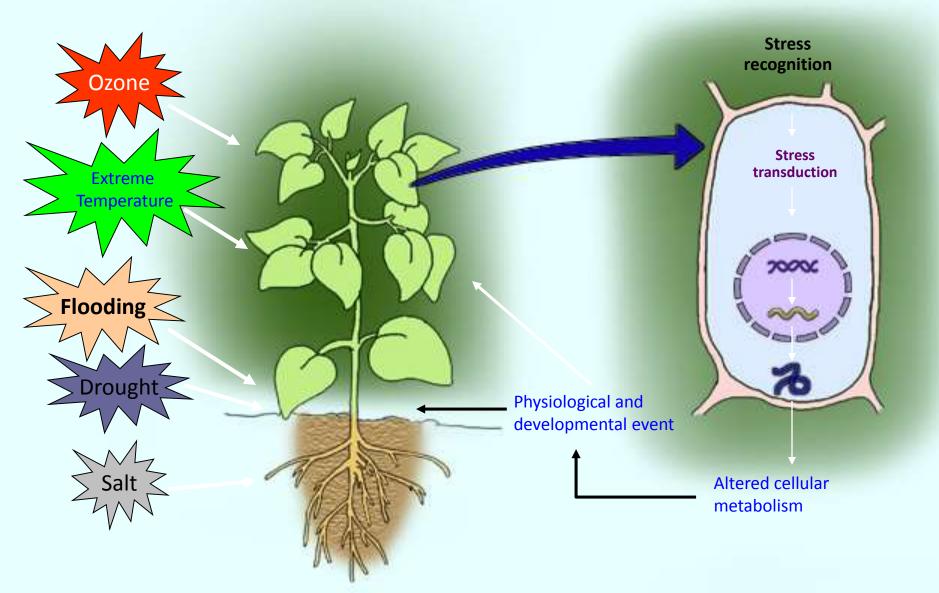
Speaker: Nimit Kumar A-2012-40-006

CONTENTS


Drought stress

- What is stress...?
- ✤ Effects
- Drought mechanism
- >Breeding strategies
 - * Approaches
 - Methods of breeding
- Case studies

> Summary


Stress

Stress is an external factor that exerts a disadvantageous influence on the plant and is measured in relation to plant survival, crop yield, growth (biomass accumulation), which are related to overall growth.

Taiz and Zeiger 2006

Response of Plants to Various Stresses

The fraction of world arable land subjected to an abiotic stress

Abiotic stress	Fraction (%)of arable land
Drought	26
Mineral	20
Freezing	15
Salinity	10

Blum 1988

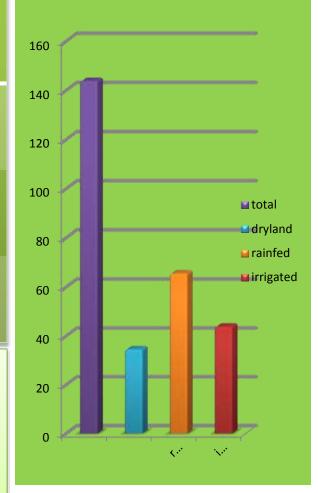
Drought

 The inadequacy of water availability, including precipitation and soil moisture storage capacity, in quantity and distribution during life cycle of crop to restrict expression of its full genetic potential.

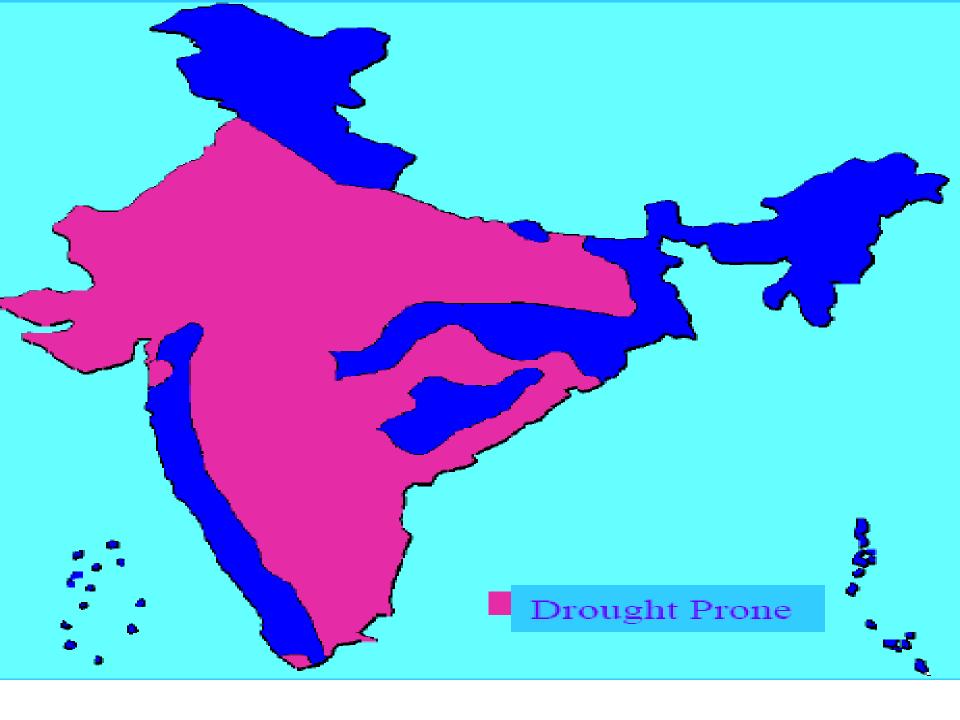
(Sinha 1986)

 "Drought stress accounts for more production losses than all other factors combined"

(John Cushman, Biochemistry Professor at the University of Nevada, Reno)


Classification of drought

Types of stress	Water potential (MPa)	Reduction in RWC
Mild Stress	0.1	8-10%
Moderate Stress	(-1.2) — (-1.5)	>10<20%
Severe Stress	>(-1.5)	>20%
		Hsiao 1973


Scenario of Drought in India

Total arable area	143.8 mha
Irrigated area	43.8 mha (30.5%)
Rainfed area	65.5 mha (45.5%)
Dryland area	34.5 mha (23.9%)

In North-West Himalayan regions 81% is under rainfed

Anonymous 2012

OCCURRENCE, POPULATION AFFECTED AND DAMAGE FROM DROUGHTS IN INDIA

1900-2002

Date	State, region or district	Population	Loss/ Deaths
		Affected (#)	(Rs.)
July 2002	13 states	300 million	41000 million
May 2001	4 states		20 deaths
Nov. 2000	5 districts in Chattisgarh		
April 2000	6 states	90 million	26500 million
March 1996	Rajasthan	-	-
March 1993	8 states	1.2 million	
July 1987	Orissa		110 deaths
1987	6 States + 4 UT	300 million	300 deaths
April/1983	3 states	100 million	
1973	Central India	100 million	2500 million
1972	Central India	100 million	2500 million
Aug. 1964	Mysore	166 million	
1964	Rajasthan, Central India	0.5 million	
1942	Kolkata, Bengal region	-	15 lakh deaths
1900	Bengal	-	13 lakh deaths
_			Samra, 2004

Drought disasters and their impacts

Years/impacts	Africa	Asia	South and Central America and Caribbean	North America	Europe	Australia
.970-1979						
Reported disasters	31	22	11	1	1	4
People affected	24,400,000	229,900,000	16,400,000	0	_	—
People died	119,000	81	0	0	0	0
Damages (\$)	599,200	393,200	2,400,000	3,000,000,000	_	—
980-1989					· · · · · ·	
Reported disasters	71	22	19	4	9	3
People affected	89,300,000	481,900,000	24,200,000	30,000	3,200,000	151,000
People died	552,000	2,200	0	0	0	0
Damages (\$)	2,600,000	942,900	1,600,000	4,800,000	5,200,000	6,000,000,000

Years/impacts 1990-1999	Africa	Asia	South and Central America and Caribbean	North America	Europe	Australia
Reported disasters	56	31	29	3	15	9
People affected				0	9,200,000	7,900,000
People died	447	2,900	12	0	0	60
Damages (\$)	2,200,000	19,100,000	2,600,000	2,100,000,000	11,700,000	4,800,000

Cont.....

2000-2007

Reported disasters	64	41	28	4	11	2
People affected	108,900,000	585,300,000	3,400,000	0	1,100,000	0
People died	1,200	200	53	0	2	0
	900,000	9,100,000	2,400,000	4 400 000 000	2,800,000	
Damages (\$)	200,000	9,100,000	2,400,000	4,400,000,000	2,000,000	Kallis 2008

MAJOR REASONs OF DROUGHT

Atmospheric factors

High temperature High wind velocities Air pollution

Soil Factors

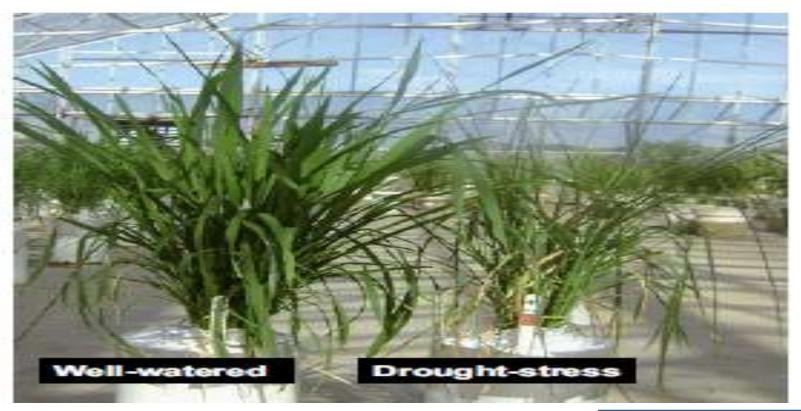
Low temperature Excessive soil salinity Receding water content

Different types of drought

- 1. Meteorological drought
- 2. Agricultural drought
- 3. Hydrological drought
- Meteorological drought; due to prolonged period with less than average precipitation.
- Agricultural drought; which affect crop production or the ecology of the range.
- Hydrological drought; when the water reserves available in sources such as aquifers, lakes and reservoirs fall below the statistical average.

EFFECTS OF DROUGHT STRESS

Effects of drought on RWC %


No	Genotype	\mathbf{Y}_{i}	Ya	DSI		e water
					NI	nt (96) I
1	FLIP97-706C	5.28	2.58	0.69	51.61	69.77
1	FLIP97-706C	6.36	3.10	0.79	51.16	57.97
3	FLIP03-31C	5.53	1.64		67.44	71.76
				0.91		
4 5	FLIP03-63C	4.45	2.92	0.47	62.07	79.66
	FLIP03-74C	7.97	2.91	1.13	58.06	86.36
6	FLIP03-87C	7.76	2.62	1.15	57.14	65.08
7	FLIP03-128C	6.33	2.72	0.86	56.76	68.42
8	FLIP03-134C	8.55	1.92	1.42	55.88	77.61
9	FLIP03-135C	5.74	2.14	0.86	68.18	79.03
10	FLIP03-141C	5.58	2.55	0.75	58.97	82.67
11	FLIP04-2C	6.97	2.16	1.08	61.29	85.25
12	FLIP04-19C	8.73	2.46	1.36	59.26	73.91
13	FLIP05-16C	9.24	2.29	1.48	63.13	75.86
14	FLIP05-18C	7.01	2.34	1.06	66.67	71.76
15	FLIP05-21C	5.07	2.16	0.73	53.85	60.23
16	FLIP05-22C	6.72	2.88	0.90	68.42	73.53
17	FLIP05-26C	7.55	3.34	0.97	68.69	83.33
18	FLIP05-33C	6,33	1.42	1.10	68.24	76.44
19	FLIP05-40C	4.72	2.31	0.64	69.23	72.97
20	FLIP05-44C	10.85	2.38	1.77	59.46	93.42
21	FLIP05-46C	6.48	2.94	0.85	55.26	66.22
22	FLIP05-58C	4.96	1.53	0.83	59.26	62.03
23	FLIP05-59C	5.77	2.20	0.85	54.81	65.96
24	FLIP05-74C	6.42	3.16	0.80	53.85	61.00
25	FLIP05-87C	7.61	2.71	1.10	57.14	59.46
26	FLIP05-110C	8.93	2.91	1.31	56.10	60.92
27	FL1P05-142C	6.08	3.19	0.73	57.89	71.88
28	FLIP05-143C	6.86	2.26	1.04	62.50	70.31
29	FLIP05-150C	7.15	2.10	1.13	60.71	63.93
30	FLIP05-153C	4.16	2.69	0.46	59.57	64.56
31	FLIP05-160C	6.08	2.38	0.88	58.26	64.77
32	FLIP82-150C	8.60	2.40	1.34	54.55	70.18
33	FLIP88-85C	8.07	3.18	1.10	59.38	65.90
34	FLIP93-93C	7.58	3.32	0.98	56.67	63.89
35	ILC482	7.29	0.23	1.50	58.33	68.83

Talebi et al.2013

•Effect on Growth:

- Reduction in Turgor Pressure,
- Reduction in Cell size

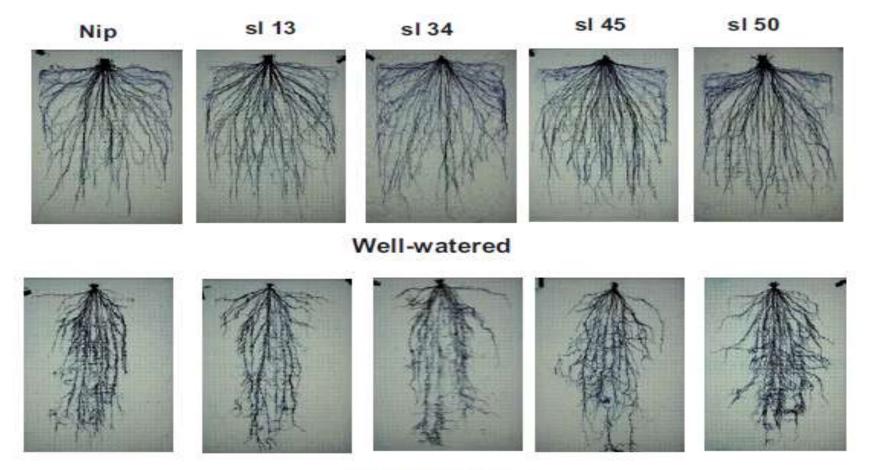
Farooq M et al. 2009

Growth characters of plants affected by water stress

	Plant heigh	t(cm)	No. o leave nt		No. o tillers nt			ts dry nt/pla	Root dry weig lant	ht/p	Leaf area/p (cm2)	olant	Flag L area (
	S1	S2	S1	S2	S1	S2	S1	S2	S1	S2	S1	S2	S1	S2
WO	70.2	62.10	16.53	13.60	3.13	2.93	3.17	3.14	0.70	0.56	206.12	182.20	36.59	24.30
W1	55.67	53.67	13.33	10.80	2.73	2.67	2.62	2.52	0.63	0.52	170.54	161.43	28.91	21.05
W2	48.20	45.03	10.93	9.27	1.53	1.67	1.83	1.71	0.50	0.40	141.74	120.98	23.94	17.18

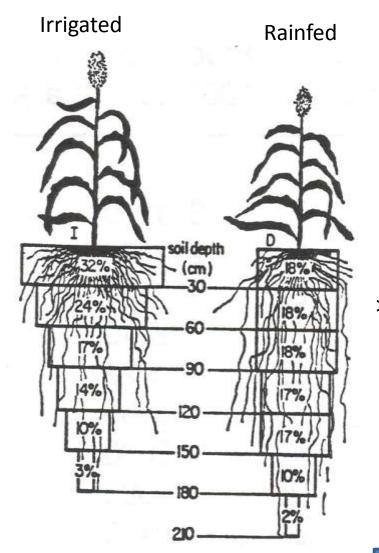
W0, W1 and W2: Irrigation after depletion of 50%, 65% and 80% of available soil water, respectively

Economic yield reduction by drought stress in some representative field crops


Сгор	Growth stage	Yield reduction	References
Barley	Seed filling	49–57%	Samarah (2005)
Maize	Grain filling	79–81%	Monneveux et al. (2005)
Maize	Reproductive	63-87%	Kamara et al. (2003)
Maize	Reproductive	70–47%	Chapman and Edmeades (1999)
Maize	Vegetative	25-60%	Atteya et al. (2003)
Maize	Reproductive	32–92%	Atteya et al. (2003)
Soybean	Reproductive	46–71%	Samarah et al. (2006)
Cowpea	Reproductive	60–11%	Ogbonnaya et al. (2003)
Sunflower	Reproductive	60%	Mazahery-Laghab et al. (2003)
Canola	Reproductive	30%	Sinaki et al. (2007)
Potato	Flowering	13%	Kawakami et al. (2006)

Cont...

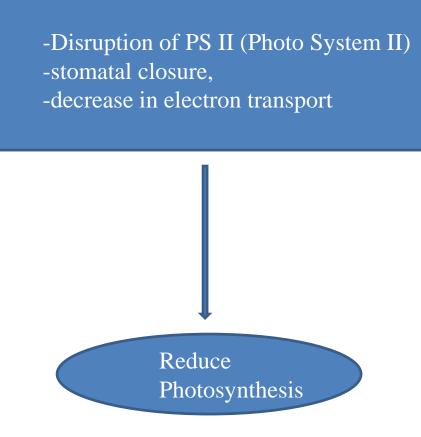
Crop	Growth stage	Yield reduction	References
Rice	Reproductive (mild stress)	53-92%	Lafitte et al. (2007)
Rice	Reproductive (severe stress)	48–94%	Lafitte et al. (2007)
Rice	Grain filling (mild stress)	30–55%	Basnayake et al. (2006)
Rice	Grain filling (severe stress)	60%	Basnayake et al. (2006)
Rice	Reproductive	24-84%	Venuprasad et al. (2007)
Chickpea	Reproductive	45–69%	Nayyar et al. (2006)
Pigeonpea	Reproductive	40–55%	Nam et al. (2001)
Common beans	Reproductive	58-87%	Martinez et al. (2007)


Farooq et al. 2009

Effects on root growth:

Drought stress

ROOT SYSTEM GROWTH



> 50% water from 90cm

Farooq et al. 2009

>50% water from 60cm

• Effect on Photosynthesis:

EFFECT OF DROUGHT ON PHOTOSYNTHETIC RATE (P_n) AND STOMATAL CONDUCTANCE (g_s)

Genotype	Treatment	14	14 DPA		DPA
		P _n	gs	P _n	gs
WT	WW	19.46	0.214	17.35	0.185
	MD	15.31	0.139	12.87	0.099
	SD	11.32	0.092	7.56	0.055
PPDK	WW	26.33	0.210	24.36	0.189
	MD	24.98	0.177	21.18	0.148
	SD	19.48	0.123	15.67	0.076
РСК	WW	28.06	0.215	25.32	0.183
	MD	25.54	0.187	21.83	0.144
	SD	20.45	0.138	16.49	0.088

WW, MD and SD represent well watered, moderate drought and severe drought, respectively.

EFFECT OF DROUGHT ON CHLOROPHYLL CONTENT

Genotype	Chlore	ophyll a	Chlore	Chlorophyll b		Chlorophyll $a + b$		Carotenoids	
	1	NI	1	NI	1	NI	1	NI	
FLIP97-706C	9.25	5.53	18.87	11.25	28.12	16.78	4.28	2.65	
FLIP03-17C	9.35	7.43	19.65	15.14	29.01	22.56	4.72	3.79	
FLIP03-31C	6.73	6.24	13.11	10.13	19.35	16.86	3.53	2.53	
FLIP03-63C	12.41	8.38	25.89	17.56	38.31	25.94	5.84	4.58	
FLIP03-74C	9.49	8.45	20.14	18.25	29.64	26.70	5.07	4.31	
FLIP03-87C	4.43	4.07	9.66	8.25	14.09	12.32	2.24	2.06	
FLIP03-128C	7.37	4.86	15.19	10.16	22.56	15.02	3.85	2.88	
FLIP03-134C	7.10	6.42	14.54	12.80	21.63	19.22	3.84	3.70	
FLIP03-135C	6.07	4.88	12.67	10.01	18.74	14.89	3.07	2.63	
FLIP03-141C	11.60	5.06	24.99	10.20	36.59	15.26	5.84	2.53	
FLIP04-2C	8.17	3.33	16.56	6.57	24.73	9.91	4.19	1.51	
FLIP04-19C	9.32	6.36	19.34	12.68	28.67	19.04	4.85	3.06	
FLIP05-16C	8,46	5.40	16.96	11.44	25.42	16.83	4.06	2.64	
FLIP05-18C	8.03	6.62	16.43	13.34	24.46	19.96	4.18	3.22	
FLIP05-21C	5.75	4.47	11.85	9.36	17.60	13.83	2.74	2.49	
FLIP05-22C	8.77	8.16	16.24	18.25	24.41	27.01	4.39	4.35	
FLIP05-26C	11.24	5.95	23.58	12.00	34.82	17.95	5.89	3.05	
FLIP05-33C	6.84	3.91	7.70	14.23	11.61	21.07	3.46	2.17	
FLIP05-40C	4.75	4.48	9.04	9.09	13.52	13.84	2.62	2.21	
FLIP05-44C	9.16	4.10	18.33	8.31	27.49	12.41	4.81	2.04	
FLIP05-46C	6.69	5.26	13.50	10.38	20.19	15.64	3.69	2.23	
FLIP05-58C	7.42	5.29	15.17	9.98	22.60	15.27	4.14	2.15	
FLIP05-59C	11.27	9.40	24.11	19.85	35.37	29.25	6.10	4.27	
FLIP05-74C	8.47	7.73	17.57	15.57	26.03	23.30	4.02	3.40	
FLIP05-87C	5.59	5.02	10.77	9.92	16.36	14.95	2.99	2.33	
FLIP05-110C	4.50	3.76	9.10	7.25	13.60	11.01	2.60	1.68	
FLIP05-142C	10.06	6.66	20.45	12.97	30.51	19.64	4.50	3.43	
FLIP05-143C	10.56	10.05	22.03	19.81	32.59	29.86	5,64	3.99	
FLIP05-150C	6.69	4.70	13.32	9.60	20.01	14.31	3.50	2.49	
FLIP05-153C	8.83	7.76	18.12	15.88	26.95	23.64	4.61	3.87	
FLIP05-160C	6.56	5.53	12.58	11.11	19.14	16.64	3.07	2.95	
FLIP82-150C	10.35	4.83	21.17	12.20	31.52	17.03	4.23	2.91	
FLIP88-85C	8.93	6.12	19.08	12.80	28.01	18.92	4.67	2.85	
FLIP93-93C	6.31	4.00	13.48	7.92	19.79	11.91	3.24	2.27	
ILC482	7.47	6.27	16.05	13.25	23.52	19.52	4.43	3.17	

Talebi et al. 2013

• Effect on proteins:

- Protease activity increases

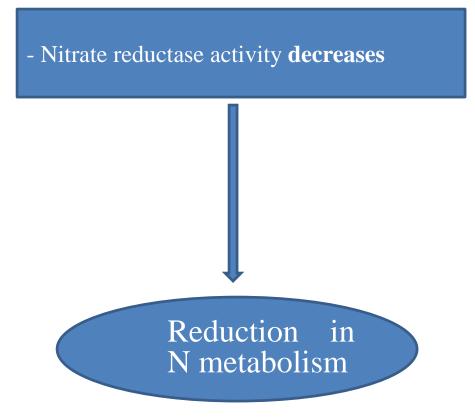
Effect of drought stress on endopeptidase activity

	Irrigate	ed		Drought		
рН	Α	A+15	A+20	Α	A+15	A+20
4.8	14.04 ±0.07	39.03 + 0.23	29.59 ±0.14	22.17 ± 0.14	132.74 ± 0.09	608.52 ± 2.62
7.0	12.34 ±0.02	39.26 ±0.18	46.81 ±0.25	24.55 ± 0.03	47.33 ± 0.09	388.2 ± 5.25
8.5	17.26 ±0.06	60.7 ± 0.45	39.73 ± 0.28	22.31 ± 0.08	68.61 ± 0.09	710.82 ± 1.75

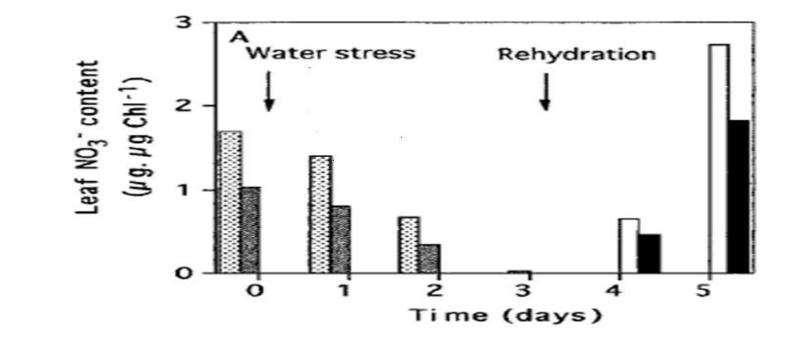
A= anthesis, A+15= 15 days after anthesis & A+20= 20 days after anthesis

Effect of drought stress on exopeptidase activity

	Irrigate	d		Drought Stress			
рН	Α	A+15	A+20	Α	A+15	A+20	
4.8	1.51 ±0.01	2.67 ± 0.02	3.58 ± 0.02	1.6 ± 0.03	5.69 ± 0.04	32.48 ± 0.22	
7.0	1.27 ±0.01	4.06 ±0.03	3.85 ± 0.01	2.14 ± 0.03	5.83 ± 0.04	43.50 ± 0.87	
8.5	1.21 ±0.02	3.31 ±0.02	3.30 ± 0.07	1.76 ± 0.01	6.46 ± 0.05	46.73 ± 0.22	


Effect of drought stress on total soluble protein

	Irrigated	Drought Stress
A	81.37 ± 0.43	60.92 ± 0.07
A+15	55.49 ± 0.14	53.60 ± 0.03
A+20	41.05 ± 0.17	6.06 ± 0.21

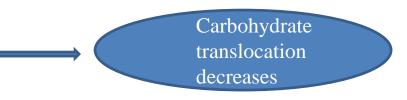

Srivalli et al. 1998

A= anthesis, A+15= 15 days after anthesis & A+20= 20 days after anthesis

Effect on Nitrogen Metabolism:

The effect of water deprivation on the foliar NO₃⁻ content

Mery et al. 1998


Effects of drought on N,P and K

	N%		N upt (mg/p	take P% plant)			P uptake (mg/plant)		K%		K uptake (mg/plant)	
	S1	S2	S1	S2	S1	S2	S1	S2	S1	S2	S1	S2
WO	3.43	3.19	110.74	101.65	0.40	0.37	12.78	11.84	2.64	2.65	84.82	83.67
W1	3.38	3.14	89.16	80.07	0.36	0.31	9.64	7.92	2.61	2.36	69.71	60.40
W2	2.68	2.43	49.59	42.02	0.30	0.24	5.55	4.22	2.24	2.13	41.39	36.71

W0, W1 and W2: Irrigation after depletion of 50%, 65% and 80% of available soil water, respectively

• Effect on Carbohydrate metabolism:

Effects of drought on carbohydrate

	Carbohydrate (%)					
	S1	S2				
WO	66.52	67.8				
W1	66.48	67.73				
W2	56.21	55.37				

salwa et al. 2014

Physio-chemical parameters of plants affected by water stress

	Chl. a+b (mg/g D.W.)				Caroter (mg/g		Total so sugars D.W.)		Total carboh (mg/g l	ydrates D.W.)	Total fr amino acids (r D.W.)	
	S1	S2	S1	S2	S1	S2	S1	S2	S1	S2		
WO	4.99	5.41	1.50	1.69	29.03	29.10	251.48	244.83	15.21	14.97		
W1	4.68	5.06	1.27	1.43	26.06	25.93	220.56	201.57	12.41	11.53		
W2	3.76	3.75	1.16	1.25	17.74	16.45	185.88	160.18	10.54	9.67		

salwa et al. 2014

W0, W1 and W2: Irrigation after depletion of 50%, 65% and 80% of available soil water, respectively

How plants cope with drought stress

Different survival mechanisms of plants at dry sites:

1) Drought escape

2) Dehydration avoidance

3) Dehydration tolerance

Levitt 1980

Drought escape

Ability of plant to complete its life cycle before on set of severe water deficit Rapid development of plant

Early maturing varieties – Terminal drought stress
 Late maturing varieties – Early season drought stress

Early or Late maturation of a crop variety has an adverse effect on its economic yield

Drought (dehydration) avoidance

Maintain realtively high water potential as long as possible under water stress.

Two groups of drought avoiders:

- i) Water savers
 - -Reduce water loss
 - -Leaf characteristics
 - -Stomatal senstivity

ii) Water spenders

- -Increase water uptake
- -Root characteristics

Anatomical and morphological traits help the plant to avoid drought.

Drought (dehydration) tolerance

Ability to tolerate the water stress by the biochemical and physiological changes

Capacity of protoplasm to tolerate severe water loss

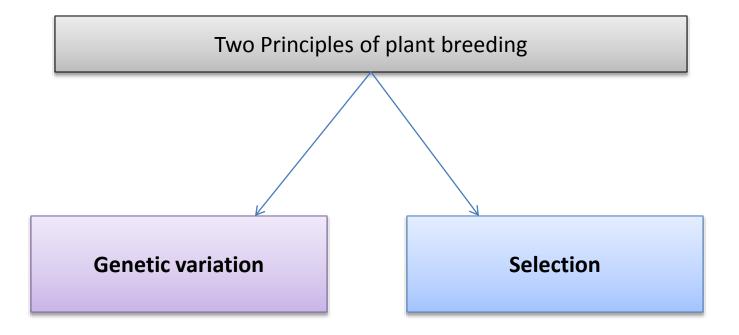
Physiological processes proceed even at high dehydration levels

Tolerance mechanisms take over when tissues are no longer protected by avoidance mechanisms

Drought tolerance usually found in xerophytes

Tolerance aims at plant survival rather than plant growth

Scoring of drought tolerance at vegetative and reproductive stage in rice


Scale	Drought tolerance at veg. stage	Spikelet fertility (%) at Reproductive Stage	Plant Recovered	
0	No symptom	-	-	
1	Slight tip drying	>80	90-100	
3	Tip drying extended upto 1/4 length in most leaves	61-80	70-89	
5	$\frac{1}{4}$ to $\frac{1}{2}$ of all leaves dried	41-60	40-69	
7	More than 2/3 of all leaves dried	11-40	20-39	
9	All plants apparently dead	<11	0-19	

Datta 1988

Crop Improvement through various approach

Fundamentals of Breeding

Genetic sources

Cultivated varieties

- Adapted variety
- No compromise on yield
- Landraces
 - problem of undesirable linkages
 - Subjected to artificial and natural selection

Wild relatives

- Aim is to survive not the yield
- Transfer of trait is major problem

Transgenes

- Cloning of target gene
- Transfer requires technical expertise

Imperata cylindrica

Breeding approach

FOUR APPROACHES

Breeding for high yield under optimum condition

No intentional selection for drought tolerance

Breeding for other characters indirectly effect drought

Screening for drought is done

Lines perform well in optimal condition show decline in yield under drought

Breeding for High yield under Stress condition

Choice of Parents

Selection under the stress environment

Drought varies from year and location

Breeding for High yield under both stress and non-stress environment

Simultaneous selection

Use of conventional method

Multi disciplinary approach

Integrate drought tolerant mechanisms

Use of genomic tools

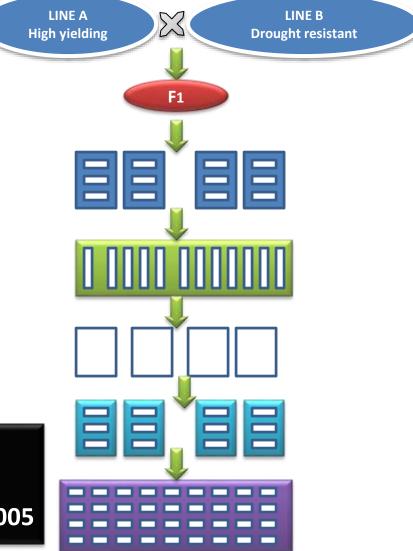
Breeding methods for drought tolerance

1. Conventional methods

2. Nonconventional methods

CONVENTIONAL METHODS

INTRODUCTION


- Primary
- Secondary

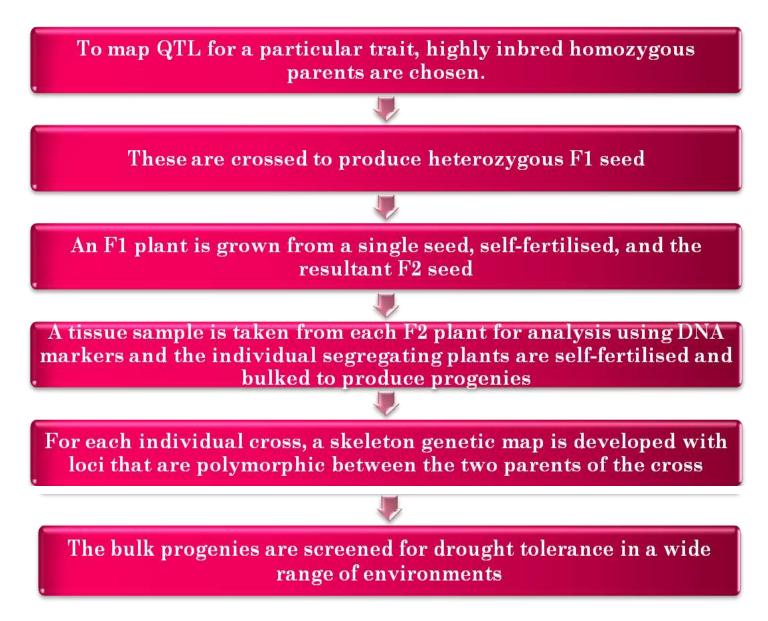
• SELECTION

- Desirable
- Adaptation
- HYBRIDIZATION

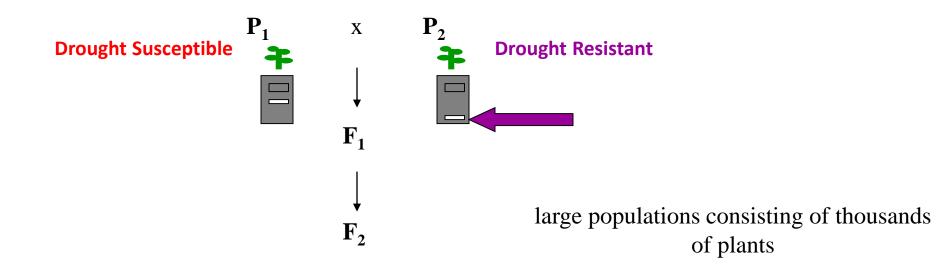
Conventional breeding focus on drought avoidance than drought tolerance

Blum 2005

NON-CONVENTIONAL METHODS


BIOTECHNOLOGY

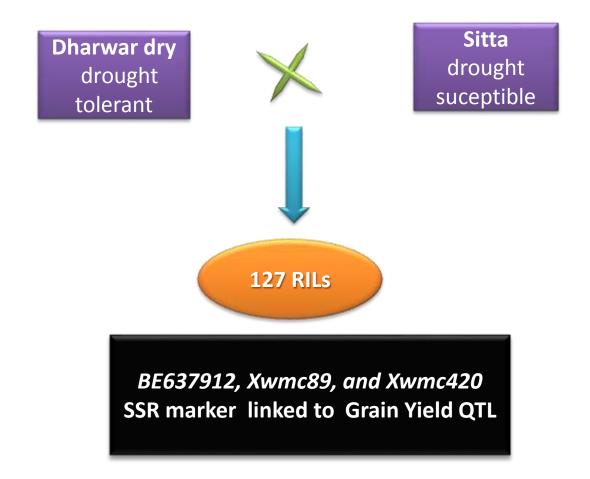
✓ GENETIC ENGINEERING

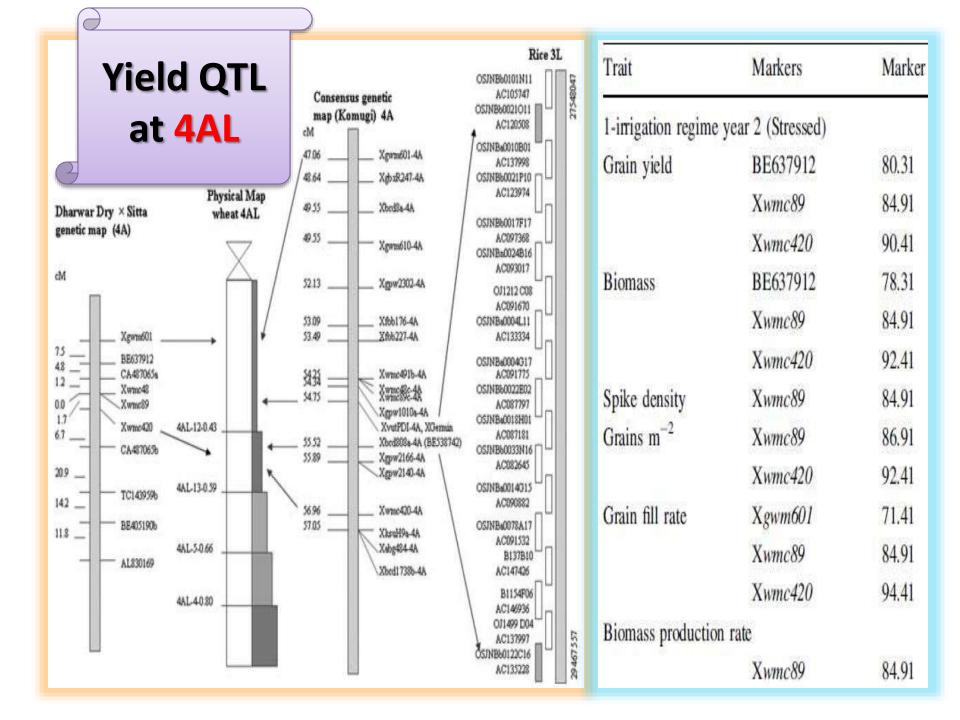

- Agrobacterium mediated gene transfer
- Particle Bombardment (Gene Gun)
- Electroporation of protoplast
- ✓ MAS
- ✓ QTL
- ✓ Molecular Cytogenetics

SEARCHED FOR ASSOCIATIONS WITH TRAITS OF INTEREST

• Drought tolerance is quantitative trait

MARKER-ASSISTED BREEDING

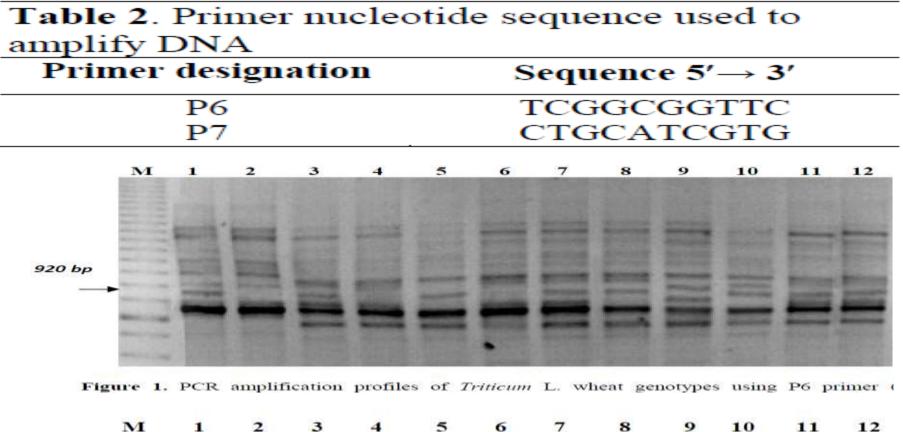

XXXX	XXXXX	×××	XXXX	×	XXX	XX	×××××	XX


MARKER-ASSISTED SELECTION (MAS)

Mol Breeding (2007) 20:401–413 DOI 10.1007/s11032-007-9100-3

Markers associated with a QTL for grain yield in wheat under drought

F. M. Kirigwi · M. Van Ginkel · G. Brown-Guedira · B. S. Gill · G. M. Paulsen · A. K. Fritz



Screening for Drought Stress Tolerance in Wheat Genotypes Using Molecular Markers

Irada M. Huseynova*, Samira M. Rustamova

Institute of Botany, Azerbaijan National Academy of Sciences, 40 Badamdar Shosse, Baku AZ 1073, Azerbaijan

Tabl	Table 1. Wheat genotypes and their drought tolerance status				
No	Genotype name	Reaction to drought			
		and genomes			
		Triticum durum L.			
1	Barakatli-95	Tetraploid	Tolerant		
2	Garagylchyg-2	(AABB)	Sensitive		
3	Gyrmyzy bugda	(AADD)	Tolerant		
		Triticum aestivum L			
4	Azamatli-95		Tolerant		
5	Giymatli-2/17		Sensitive		
6	Gobustan		Tolerant		
7	Gyrmyzy gul	TTerrenteid	Semi-tolerant		
8	Tale-38	Hexaploid	Semi-tolerant		
9	Ruzi-84	(AABBDD)	Tolerant		
10	12 nd FAWWON No 97 (130/21)		Sensitive		
11	4 ^{tn} FEFWSN No 50 (130/32)		Semi-tolerant		
12	Saratovskaya		Tolerant		

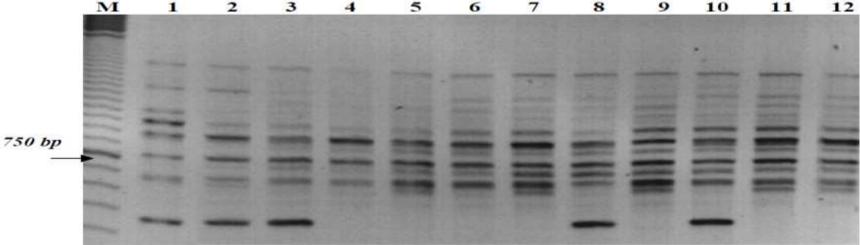


Figure 2. PCR amplification profiles of wheat genotypes Triticum L. using a primer P7 (

REVIEW PAPER

Genetic and genomic tools to improve drought tolerance in wheat

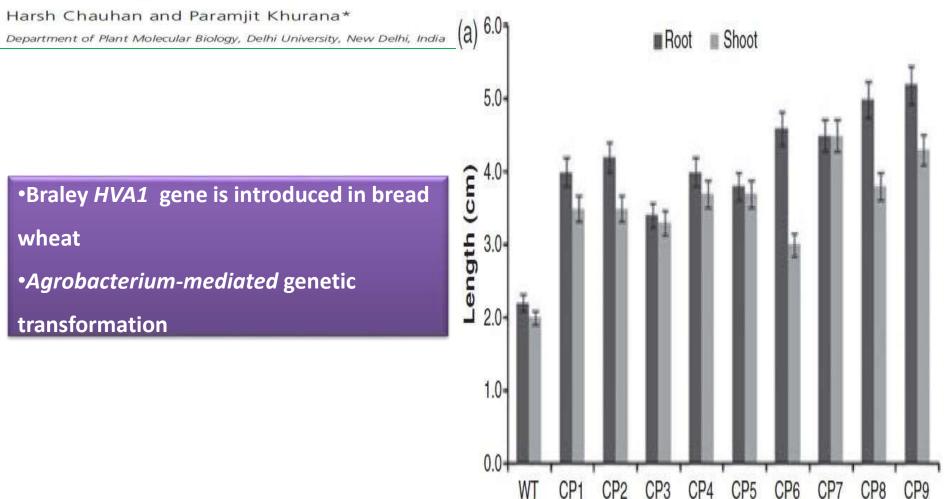
Journal of

Botany

Experimental

www.ixb.oxfordjournals.org

Delphine Fleury^{1,*}, Stephen Jefferies², Haydn Kuchel² and Peter Langridge¹


Stress	Chromosome location	Reference		
Wheat				
Drought	20 QTLs	Kirigwi et al., 2007;		
		Mathews et al., 2008;		
		Salem et al., 2007		
Cold	5A, 1D	Baga et al., 2007		
Copper	1AL, 2DS, 3DS,	Balint et al., 2007;		
toxicity	4AL, 5AL, 5DL,	Balint et al., 2009		
	5BL, and 7DS			
Aluminium	4DL, 3BL, 2A,	Cai et al., 2008;		
toxicity	5AS, and 2DL	Ma et al., 2006		
Salinity	47 QTLs	Ma et al., 2007		
Heat	1B, 5B, and 7B	Mohammadi et al., 2008b		
Nitrogen	2D, 4B, and 5A	Laperche et al., 2008		
deficiency				
Barley				
Drought	38 QTLs	von Korff et al., 2008		
Salinity	30 QTLs	Witzel et al., 2010;		
		Xue et al., 2009		
Water-logging	20 QTLs	Li et al., 2008		
Aluminium toxicity	2H, 3H, and 4H	Navakode et al., 2009		

Plant Biotechnology Journal

Plant Biotechnology Journal (2011) 9, pp. 408-417

Use of doubled haploid technology for development of stable drought tolerant bread wheat (*Triticum aestivum* L.) transgenics

African Journal of Biotechnology Vol. 10(55), pp. 11340-11344, 21 September, 2011 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB11.700 ISSN 1684-5315 © 2011 Academic Journals

Review

Potentials of molecular based breeding to enhance drought tolerance in wheat (*Triticum aestivum* L.)

Mueen Alam Khan^{1*}, Muhammad Iqbal¹, Moazzam Jameel¹, Wajad Nazeer², Sara Shakir¹, Muhammad Tabish Aslam¹ and Bushra Iqbal¹

Cross	Trait	QTL Mapping	Number of QTL	Reference	
Chinese Spring x Ciano 67	ABA concentration	DHL*	1	Quarrie et al. (1994)	
Songlen x Cobdor 4/3Ag14	Osmoregulation under drought	RIL*	1	Morgan and Tan (1996)	
Trident x Molineux	Yield interaction with water supply and hot conditions	DHL	1	Kuchel et al. (2007)	
Durum x Wild emmer	Various morpho- physiological traits	RIL	many	Peleg et al. (2009)	
Seri M82 x Babax	Various productivity and physiological traits	RIL	many	McIntyre et al. 2010; Suzuky Pinto et al., 2010.	

Table 1. Summary of QTLs associated with drought tolerance in wheat^a

*DHL= doubled haploid; RIL= recombinant inbred lines; *Similar studies reported in the text were not included in this table.

Genes associated with drought

Gene	Mechanism of tolerance	Reference
DREB1A	Regulatory control	Pellegrineschi et al. (2004).
HVA1	Protective proteins	Sivamani et al., 2000; Bahieldin et al., 2005
mtlD	Mannitol as osmoprotectant	Abebe et al. (2003)
		Kavi Kishor et al., 1995; Sawahel and Hassan, 2002
TaLTP1	Lipid transfer protein	Jang et al. (2004).

QTL analysis of drought tolerance for seedling root morphological trait in an advance backcross population

• 32 QTLs identified	Trait ^a	QTL ^b	Marker	Chr ^e	Pos ^d
JZ QILS Identified	AVD	QAvd.D84-4B.a	Xbarc114	4B	59
	CRS	QCrs.D84-1D.a	Xgwm642	1D	75.4
 Seven root traits 	C TO CONTRACTOR AND	QCrs.D84-2B.a	Xwmc332	2B	93.4
		QCrs.D84-2D.a	Xgwm102	2D	48.2
	192	QCrs.D84-7A.a	Xbarc275	7A	144
1 August d and d $(A)(D)(4)$	FRK	QFrk.D84-1D.a	Xgwm642	1D	75.4
1.Average root diameter (AVD)(1)		QFrk.D84-2A.a	Xgwm95	2A	52.5
		QFrk.D84-2D.a	Xgwm102	2D	48.2
		QFrk.D84-7D.a	Xbarc184	7D	28.2
2.Number of root crossings	TIP	QTip.D84-1D.a	Xgwm642	1D	75.4
		QTip.D84-4A.a	Xgwm397	4A	18.4
		QTip.D84-4B.a	Xgwm513	4B	27.4
(CRS)(4)		QTip.D84-5B.a	Xgwm604	5 B	123.7
		QTip.D84-6D.a	Xgwm325	6D	52.9
	100	QTip.D84-7D.a	Xbarc184	7D	28.2
3.Number of root forks (FRK)(4)	RV	QRv.D84-2A.a	Xgwm95	2A	52.5
		QRv.D84-3A.a	Xwmc559	3A	83.3
		QRv.D84-4A.a	Xgwm44	4A	9.9
4.Number of root tips (TIP)(6)	72	QRv.D84-5D.a	Xbarc322	5D	82
4.Number of foot tips (TP)(0)	SRA	QSra.D84-1D.a	Xgwm642	1D	75.4
		QSra.D84-2A.a	Xgwm95	2A	52.5
Γ Dept. (D) ()(A)		QSra.D84-2D.a	Xgwm102	2D	48.2
5.Root volume (RV)(4)		QSra.D84-5B.a	Xcfd60	5B	14.3
		QSra.D84-5D.a	Xbarc322	5D	82
	100	QSra.D84-7D.a	Xbarc184	7D	28.2
6.Surface root area (SRA)(6)	TRL	QTr1.D84-1D.a	Xgwm642	1D	75.4
		QTrl.D84-2A.a	Xgwm95	2A	52.5
		QTrl.D84-2D.a	Xgwm102	2D	48.2
7.Total root length (TRL)(7)		QTrl.D84-5B.a	Xcfd60	5 B	14.3
		QTr1.D84-5D.a	Xbarc143	5D	23.4
		QTrl.D84-7A.a	Xbarc275	7A	144
	- 1	QTrl.D84-7D.a	Xbarc184	7D	28.2

Ibrahim et al. 2012

Drought Tolerance in Modern and Wild Wheat

Hikmet Budak, Melda Kantar, and Kuaybe Yucebilgili Kurtoglu

Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Tuzla Istanbul, Turkey

Correspondence should be addressed to Hikmet Budak; budak@sabanciuniv.edu

Received 5 March 2013; Accepted 3 April 2013

Gene Function Related mechanism/stress TaPIMP1 Transcription factor: R2R3 type MYB TF Drought Transcription factor: Triticum aestivum salt TaSRG Drought response gene TaMYB3R1 Transcription factor: MYB3R type MYB TF drought TaNAC Transcription factor: plant specific NAC Drought (NAM/ATAF/CUC) TF (NAM/ATAF/CUC) TaMYB33 Transcription factor: R2R3 type MYB TF Drought TaWRKY2, Transcription factor: WRKY type TF Drought TaWRKY19 TdicDRF1 Transcription factor: DRE binding protein Drought Kinase: protein kinase ABC1 (activity of TaABC1 Drought bc(1) complex) Kinase: SNF1 type serine/threonine protein TaSnRK2.4 Drought kinase Kinase: SNF1 type serine/threonine protein TaSnRK2.7 drought kinase TdTMKP1 Phosphatase: MAP kinase phosphatase Drought CHP rich zinc finger protein with unknown ABA-dependent and TaCHP function -independent pathways TaCP Protein degradation: cysteine protease Drought Water retention ability and TaEXPR23 Cell wall expansion: expansin osmotic potential Nucleocytoplasmic transport of 5S TaL5 Drought ribosomal RNA: ribosomal L5 gene TdPIP1;1, TdPIP1;2 Protective protein: aquaporin Drought TdicATG8 Autophagy: autophagy related gene 8 Drought Autophagy: integral transmembrane protein TdicTMPIT1 Drought inducible by TNF-a Enhanced response to ABA, Era1, Sall Drought inositol polyphosphate 1-phosphatase

TABLE 2: List of identified and characterized drought related genes

Ta: Triticum aestivum; Td: Triticum durum; Tdic: Triticum dicoccoides; DRE: drought related element; SNF: Sucrose nonfermenting; MAP: mitogen activated protein; ABA: abscisic acid; CHP: cysteine histidine proline; TNF-α: tumor necrosis factor α; PIMP: pathogen induced membrane protein; CP: cysteine protease; EXPR: expansin; PIP: plasma membrane intrinsic proteins.

Barley HVA1 Gene Confers Drought and Salt Tolerance in Transgenic Crop species

Host plant	Results		
Wheat	Increased biomass and water use efficiency under stress		
Oat	Delayed wilting under drought stress		
Rice	Drought and salinity tolerance		
Rice	Dehydration avoidance and cell membrane stability		
Oat	Salinity tolerance and increased yield		
Wheat	Improved yield under drought conditions in the field		
Mulberry	Salinity and drought resistance		

Gene Enzyme involved/role Symptoms Drought tolerance in CspA, Molecular chaperones vield increase under field CspB conditions Mitogen-activated protein Improved photosynthesis NPK1 kinase and drought tolerance Non-functional mutant ZmACS6 Ethylene synthesis expressed drought induced senescence Drought resistance Choline dehydrogenase for at seedling Drought betA glycine betaine synthesis tolerance and yield increase Transcription factor regulating NFYB2 Drought resistance other genes BADH-1 Glycine betaine production Salinity tolerance GDH Glutamate dehydrogenase Drought resistance

Table 1: Expression of barley HVA1 gene in different transgenic crop species.

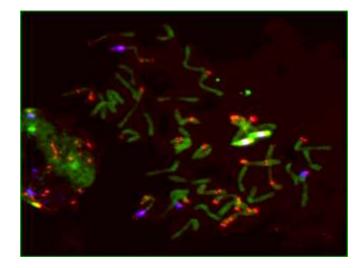
Table 2: A summary of genes previously transferred into maize genome for development of drought and/or salinity tolerance.

Nguyen et al. 2013

•AtDREB1A gene is transferd in rice

•Agrobacterium-mediated genetic transformation

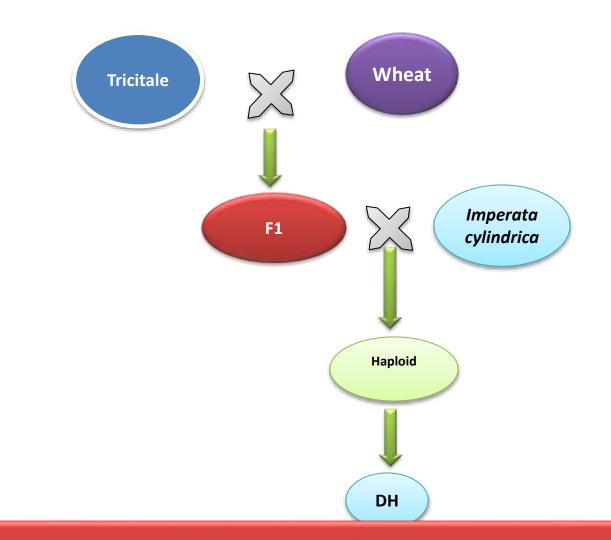
Morphology of transgenic rice plants during the water stress period

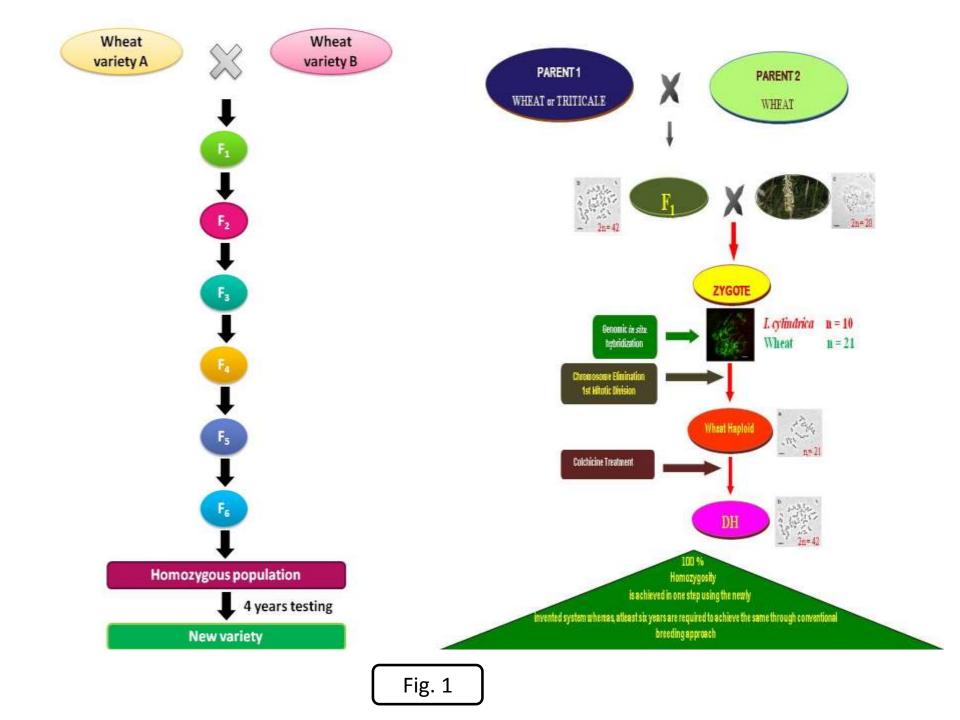

Line number	Average tiller	number Leaf rolling on treatment day 7	Leaf drying on treatment day 7	Leaf rolling on treatment day 14	Leaf drying on treatment day 14	Recovery after 7 days (%)	Observed phenotype
BD-33-24-4	10	н	Ν	н	Ν	90–100	нт
BD-33-24-5	12	н	Ν	н	Ν	90–100	нт
BD-33-24-6	15	н	Ν	н	Ν	90–100	нт
BD-33-24-7	10	н	Ν	н	Ν	90–100	нт
BD-33-24-9	10	н	Ν	н	Ν	90–100	нт
BD-33-29-1	9	D	т	н	L	70–89	MT
BD-33-30-1	10	D	т	н	L	70–89	MT
BD-33-34-1	10	D	т	н	L	70–89	MT
WILD TYPE	12	т	Α	С	A	0	SC

H Healthy, T tightly rolled, L leaf margin touching, D deep V shape rolling, N no drying, A apparently dead, t tip drying started,C completely wilted, L little drying, HT highly tolerant, MT moderate tolerant, SC susceptible,

Ravikumar et al. 2014

Work done at CSKHPKV


- Rye is an ultimate source of drought tolerance
- 1RS translocations
- Himalayan rye source



Chaudhary HK and Mukai 2007

Recombinant Wheat with Rye Introgressions

Chaudhary H.K., Sethi G.S., Singh S., Pratap A. and Sharma S. 2005. Efficient haploid induction in wheat by using pollen of *Imperata cylindrica*. *Plant Breeding* 124(1): 96-98.

Isolation of the drought tolerant & susceptible lines

Highly tolerant	Highly susceptible
DH 100	DH 5
DH 106	DH 52
DH 114	DH150
DH 40	DH144
DH 65	
DH89	
C 306	
VL 829	
KWS 29	

Dixit and Chaudhary 2009

Summary

In the days of global warming, the effect of drought stress on crop productivity is expected to increase

***** The crop plants have evolved certain resistance mechanism against drought stress

- we should identify those mechanisms and traits
- and introgress them into susceptible genotypes

***** Only conventional breeding is not sufficient in development of drought tolerant variety

***** Non conventional approaches i.e. Molecular breeding can play a significant role in the sphere of abiotic stress mainly drought tolerance

Genomic regions carrying drought tolerant gene can contribute for abiotic stress tolerance

