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ABSTRACT

KLEMAS, V., 2011. Remote sensing techniques for studying coastal ecosystems: an overview. Journal of Coastal
Research, 27(1), 2–17. West Palm Beach (Florida), ISSN 0749-0208.

Advances in sensor design and data analysis techniques are making remote sensing systems practical and attractive for
use in research and management of coastal ecosystems, such as wetlands, estuaries, and coral reefs. Multispectral and
hyperspectral imagers are available for mapping coastal land cover, concentrations of organic/inorganic suspended
particles, and dissolved substances in coastal waters. Thermal infrared scanners can map sea surface temperatures
accurately and chart coastal currents, while microwave radiometers can measure ocean salinity, soil moisture, and other
hydrologic parameters. Radar imagers, scatterometers, and altimeters provide information on ocean waves, ocean winds,
sea surface height, and coastal currents, which strongly influence coastal ecosystems. Using airborne light detecting and
ranging systems, one can produce bathymetric maps, even in moderately turbid coastal waters. Since coastal ecosystems
have high spatial complexity and temporal variability, they frequently have to be observed from both satellite and
aircraft in order to obtain the required spatial, spectral, and temporal resolutions. A reliable field data collection
approach using ships, buoys, and field instruments with a valid sampling scheme is required to calibrate and validate the
remotely sensed information. The objective of this paper is to present an overview of practical remote sensing techniques
that can be used in studies of coastal ecosystems.

ADDITIONAL INDEX WORDS: Wetland mapping, estuaries, coral reefs, eutrophication, coastal habitat.

INTRODUCTION

Coastal wetlands, estuaries, and coral reefs represent highly

productive and critical habitats for a wide variety of plants, fish,

shellfish, and other wildlife. Wetlands also provide flood

protection, protection from storm and wave damage, water

quality improvement through filtering of agricultural and

industrial waste, and recharge of aquifers. After years of

degradation due to dredge and fill operations, impoundments,

urban development, subsidence/erosion, toxic pollutants, and

eutrophication, wetlands and estuaries are finally receiving

public attention and protection (Morris et al., 2002; Odum, 1993).

In addition to immediate impacts due to anthropogenic

activities, global warming and sea-level rise (SLR) will have

serious long-term consequences for coastal ecosystems, such as

wetlands and coral reefs. The rate of SLR around the world has

increased over the past century to an average of about 3 mm a

year, as a result of melting glaciers and the expansion of ocean

water as it warms. The Intergovernmental Panel on Climate

Change estimates that the rate of SLR will accelerate in the

future, with an upper range of SLR of 0.59 m by 2100 (IPCC,

2007). Based on the observed acceleration of SLR, some

scientists are estimating a SLR of more than a meter by 2100

(Church and White, 2006). This substantial SLR and more

frequent storms predicted for the next 100 years will impact

coastal wetlands, beach erosion control strategies, salinity of

estuaries and aquifers, coastal drainage systems, and coastal

economic development.

Coastal areas such as barrier islands, beaches, and wetlands

are highly sensitive to sea-level changes. Rising seas will

intensify coastal flooding and increase the erosion of beaches,

bluffs, and wetlands, as well as threaten jetties, piers, seawalls,

harbors, and waterfront property. Along barrier islands, the

erosion of beachfront property by flooding water will be severe,

leading to greater probability of overwash during storm surges

(NOAA, 1999). Rapid SLR can cause segmentation of barrier

islands or disintegration of wetlands, especially if the sediment

supply cannot keep up with the SLR. Furthermore, as the

ocean surface water warms, stronger storms are predicted for

the coasts of the Atlantic and the Gulf of Mexico. A major

hurricane can devastate a wetland. For instance, during

hurricanes Katrina and Rita, several hundred square miles of

Louisiana wetlands practically vanished.

With the wide variety of remote sensing systems available,

choosing the proper data source for observing landcover and

coastal waters can be challenging. Characteristics often used to

describe and compare these analogue and digital systems are

grouped into four different types of resolution: spatial, spectral,

radiometric, and temporal. Spatial resolution is a measure of

sharpness or fineness of spatial detail. It determines the
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smallest object that can be resolved by the sensor, or the area on

the ground represented by each picture element (pixel). For

digital imagery, spatial resolution corresponds to the pixel size.

Spatial resolution is often represented in terms of distance (e.g.,

30 m, 1 km, etc.) and describes the side-length of a single pixel.

Spectral resolution is a measure of the specific wavelength

intervals that a sensor can record. For example, while normal

color photographs show differences in the visible region of the

electromagnetic spectrum, color infrared photographs and the

majority of digital sensors can provide information from both

visible and infrared (IR) regions of the spectrum. For digital

images, spectral resolution corresponds to the number and

location of spectral bands, their width, and the range of

sensitivity within each band (Jensen, 2007).

Radiometric resolution is a measure of a sensor’s ability to

distinguish between two objects of similar reflectance. Radio-

metric resolution can be thought of as the sensor’s ability to

make fine or ‘‘subtle’’ distinctions between reflectance values.

For example, while the Landsat thematic mapper (TM) has a

radiometric resolution of 256 (8 bits), the moderate resolution

imaging spectrometer (MODIS) has a radiometric resolution of

4,096 (12 bits). This means TM can identify 256 different levels

of reflectance in each band, while MODIS can differentiate

4,096; thus MODIS imagery can potentially show more and

finer distinctions between objects of similar reflectance (Camp-

bell 2007).

Temporal resolution is a measure of how often the same area

is visited by the sensor. Temporal resolution does not describe a

single image, but rather a series of images that are captured by

the same sensor over time. While the temporal resolution of

satellite imagery depends on the satellite’s orbit characteris-

tics, aerial photography obviously requires special flight

planning for each acquisition.

Most coastal ecosystems exhibit extreme variations in areal

extent, spatial complexity, and temporal variability. Protecting

them requires the ability to monitor their biophysical features

and controlling processes at high spatial and temporal

resolutions. Satellite and airborne remote sensors can now

map and measure coastal ecosystems and their changes cost-

effectively at appropriate scales and resolutions, minimizing

the need for extensive field and ship measurements. This is

illustrated in Figure 1, which shows an image of the Texas

Figure 1. The MODIS on NASA’s Terra satellite captured this image on September 26, 2008, thirteen days after Hurricane Ike came ashore. The brown

areas in the image are the result of a massive storm surge that Ike pushed far inland over Texas and Louisiana causing a major marsh dieback.

Credits: NASA/GSFC.
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coast captured by the MODIS sensor on the National

Aeronautics and Space Administration’s (NASA’s) Terra

satellite 13 days after Hurricane Ike made landfall on

September 13, 2008. The storm’s surge covered hundreds of

kilometers of the Gulf Coast because Ike was a large storm,

with tropical-storm-strength winds stretching more than

400 km from the center of the storm. Most of the shoreline in

this region is coastal wetland. One can clearly distinguish the

brown areas in the image, which are the result of the massive

storm surge that Ike had pushed far inland over Texas and

Louisiana, causing a major marsh dieback. The salty water

burned the plants, leaving them wilted and brown. The brown

line corresponds with the location and extent of the wetlands.

North of the brown line, the vegetation gradually transitions to

pale green farmland and dark green natural vegetation

untouched by the storm’s surge. The powerful tug of water

returning to the gulf also stripped marsh vegetation and soil off

the land. Therefore, some of the brown seen in the wetlands

may be deposited sediment. Plumes of brown water are visible

as sediment-laden water drains from rivers and the coast in

general. The muddy water slowly diffuses, turning pale green,

green, and finally blue as it blends with clearer Gulf water

(NASA/GSFC, 2010; Ramsey and Rangoonwala, 2005).

To obtain the required spatial, spectral, and temporal

resolutions, coastal ecosystems frequently have to be observed

from both satellite and aircraft. Some of the ecosystem health

indicators that can be observed by remote sensors include

natural vegetation cover, wetland loss and fragmentation,

wetland biomass change, percentage of impervious watershed

area, buffer degradation, and changes in hydrology, water

turbidity, chlorophyll concentration, eutrophication level,

salinity, temperature, etc. (Lathrop, Cole, and Showalter,

2000; Martin, 2004; Wang, 2010).

MAPPING COASTAL WETLANDS
AND WATERSHEDS

To study the impact of land runoff on estuarine and coastal

ecosystems, a combination of models is frequently used,

including watershed models, hydrodynamic models, water

quality models, and living resource models (Li et al., 2007;

Linker et al., 1993). Most coastal watershed models require

land cover or land use as an input. With input regarding how

the land cover is changing, these models, together with a few

other inputs like slope and precipitation, can predict the

amount and type of runoff into rivers, bays, and estuaries and

how these ecosystems will be affected (Jensen, 2007). The

Landsat TM has been a reliable source for land cover data. Its

30-m resolution and spectral bands have proved adequate for

observing land cover changes in large coastal watersheds (e.g.,

Chesapeake Bay). Figure 2 shows a land cover map derived

from a Landsat TM image, acquired in 1993, of the Delaware

Bay region containing 11 landcover classes. Note that the map

in Figure 2 includes three wetland, five upland, and two water

classes, as required by that study (Weatherbee, 2000). Other

similar satellites with medium-resolution imagers can also be

used (Klemas, 2005).

A typical digital image analysis approach for classifying

coastal wetlands or land cover is shown in Figure 3. Before

analysis, the multispectral imagery must be radiometrically

and geometrically corrected. The radiometric correction reduces

the influence of haze and other atmospheric scattering particles

and any sensor anomalies. The geometric correction compen-

sates for the Earth’s rotation and for variations in the position

Figure 2. Delaware Bay landcover classification from 1993 based on

Landsat TM imagery. Modified from Weatherbee (2000).

Figure 3. Typical image analysis approach.

4 Klemas
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and attitude of the satellite. Image segmentation simplifies

the analysis by first dividing the image into homogeneous

patches or ecologically distinct areas. Supervised classifica-

tion requires the analyst to select training samples from the

data that represent the themes to be classified (Jensen, 1996).

The training sites are geographic areas previously identified

using field visits or other reference data, such as aerial

photographs. The spectral reflectances of these training sites

are then used to develop spectral ‘‘signatures,’’ which will be

used to assign each pixel in the image to a thematic class.

Next, an unsupervised classification is performed to identify

variations in the image not contained in the training sites. In

unsupervised classification, the computer automatically iden-

tifies the spectral clusters representing all features on the

ground. Training site spectral clusters and unsupervised

spectral classes are then compared and analyzed using cluster

analysis to develop an optimal set of spectral signatures. Final

image classification is then performed to match the classified

themes with the project requirements (Jensen, 1996). Note that

throughout the process, ancillary data are used whenever

available (e.g., aerial photos, maps, field samples, etc.).

When studying wetland sites or small watersheds one can

use aircraft or high-resolution satellite systems (Adam,

Mutanga, and Rugege, 2010; Klemas, 2005). Airborne geo-

referenced digital cameras, providing color and color-IR digital

imagery are particularly suitable for accurate mapping or

interpreting satellite data. Most digital cameras are capable of

recording reflected visible to near-IR light. A filter is placed

over the lens that transmits only selected portions of the

wavelength spectrum. For a single camera operation, a filter is

chosen that generates natural color (blue–green–red wave-

lengths) or color-IR (green–red–near-IR wavelengths) imagery.

For multiple camera operations, filters that transmit narrower

bands are chosen. For example, a four-camera system may be

configured so that each camera filter passes a band matching a

specific satellite imaging band, e.g., blue, green, red, and near-

infrared (NIR) bands matching the bands of the IKONOS

satellite multispectral sensor (Ellis and Dodd, 2000).

Such digital imagery can be integrated with global position-

ing system (GPS) position information and used as layers in a

geographic information system (GIS) for a wide range of

modeling applications (Lyon and McCarthy, 1995). Small

aircraft flown at low altitudes (e.g., 500 m) can be used to

supplement field data. High-resolution imagery (0.6 m to 4 m)

can also be obtained from satellites, such as IKONOS and

QuickBird (Table 1). However, cost becomes excessive if the

site is larger than a few hundred square kilometers, and in that

case, medium-resolution sensors, such as Landsat TM (30 m)

and SPOT (20 m), become more cost-effective. Wetland species

identification is difficult; however, some progress is being made

using hyperspectral imagers (Jensen et al., 2007; Klemas,

2009a; Porter et al., 2006; Schmidt et al., 2004; Yang et al.,

2009). Hyperspectral imagers may provide several hundred

spectral bands as compared with multispectral imagers, which

use less than a dozen bands.

In 2004 the National Oceanic and Atmospheric Administra-

tion’s (NOAA’s) National Estuarine Research Reserve System

(NERRS) Program funded a team of remote sensing experts to

compare the cost, accuracy, reliability, and user-friendliness of

four remote sensing approaches for mapping land cover,

emergent wetlands, and submerged aquatic vegetation. The

four remote sensing systems evaluated include aerial hyper-

spectral (AISA), aerial multispectral (ADS 40, DMC), IKONOS

(or QuickBird), and Landsat TM. Four NERRS test sites were

selected for the project, including the ACE Basin, South

Carolina; Grand Bay, Michigan; St. Jones River & Blackbird

Creek, Delaware; and Padilla Bay, Washington. Completed in

2006, this study found that aerial hyperspectral image analysis

is too complicated for typical NERRS site personnel, and the

imagery is too expensive for large NERRS sites or entire

watersheds. Owing to different sun angles for each flight strip,

a separate atmospheric correction had to be implemented. Also,

the aircraft roll due to wind conditions produced uneven

swaths. Furthermore, it was difficult to discriminate wetlands

species even with hyperspectral imagery (Porter et al., 2006).

In the NERRS study, the highest accuracy for mapping

clusters of different plant species over small critical areas was

obtained by visually analyzing orthophotos produced by

airborne digital cameras. The visual interpretation was

performed after image segmentation and with the help of field

Table 1. High-resolution satellite parameters and spectral bands (DigitalGlobe, 2003; Orbimage, 2003; Parkinson, 2003; Space Imaging, 2003).

Parameter Spectral Band IKONOS QuickBird OrbView-3 WorldView-1 GeoEye-1 WorldView-2

Sponsor Space Imaging DigitalGlobe Orbimage DigitalGlobe GeoEye DigitalGlobe

Date launched September 1999 October 2001 June 2003 September 2007 September 2008 October 2009

Spatial resolution (m) Panchromatic 1.0 0.61 1.0 0.5 0.41 0.5

Multispectral 4.0 2.44 4.0 n/a 1.65 2

Spectral range (nm) Panchromatic 525–928 450–900 450–900 400–900 450–800 450–800

Coastal blue n/a n/a n/a n/a n/a 400–450

Blue 450–520 450–520 450–520 n/a 450–510 450–510

Green 510–600 520–600 520–600 n/a 510–580 510–580

Yellow n/a n/a n/a n/a n/a 585–625

Red 630–690 630–690 625–695 n/a 655–690 630–690

Red edge n/a n/a n/a n/a n/a 705–745

NIR 760–850 760–890 760–900 n/a 780–920 770–1,040

Swath width (km) 11.3 16.5 8 17.6 15.2 16.4

Off nadir pointing 626u 630u 645u 645u 630u 645u
Revisit time (days) 2.3–3.4 1–3.5 1.5–3 1.7–3.8 2.1–8.3 1.1–2.7

Orbital altitude (km) 681 450 470 496 681 770

Using Remote Sensing in Coastal Ecosystems 5
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training sites visited before and after the interpretation

process. For larger sites, combining IKONOS and Landsat

TM proved cost-effective and user-friendly, if the Landsat TM

imagery was used to map land cover for the large site or entire

watershed and the IKONOS high-resolution imagery was used

for detailed mapping of critical NERRS areas or those

identified by Landsat TM as having changed. A particularly

effective technique developed by the team is based on using

biomass change as a habitat change indicator (Klemas, 2007;

Porter et al., 2006).

MONITORING WETLAND CHANGES AND
LANDCOVER TRENDS

To identify long-term trends and short-term variations, such

as the impact of rising sea levels and hurricanes on wetlands,

one needs to analyze time series of remotely sensed imagery.

The acquisition and analysis of time series of multispectral

imagery is a difficult task. The imagery must be acquired under

similar environmental conditions (e.g., same time of year, sun

angle, etc.) and in the same or similar spectral bands. There will

be changes in both time and spectral content. One way to

approach this problem is to reduce the spectral information to a

single index, reducing the multispectral imagery into one

single field of the index for each time step. In this way the

problem is simplified to the analysis of time series of a single

variable, one for each pixel of the images. The most common

index used is the normalized difference vegetation index

(NDVI), which is expressed as the difference between the red

and NIR reflectances divided by their sum. These two spectral

bands represent the most detectable spectral characteristic of

green plants. This is because the red radiation is absorbed by

the chlorophyll in the surface layers of the plant (palisade

parenchyma) and the NIR is reflected from the inner leaf cell

structure (spongy mesophyll) as it penetrates several leaf

layers in a canopy. Thus the NDVI can be related to plant

biomass or stress, since the NIR reflectance depends on the

abundance of plant tissue and the red reflectance indicates the

surface condition of the plant. It has been shown by researchers

that time series of remote sensing data can be used effectively

to identify long-term trends and subtle changes of NDVI by

means of principal component analysis (Jensen, 2007; Young

and Wang, 2000).

The preprocessing of multidate sensor imagery, when

absolute comparisons between different dates are to be carried

out, is much more demanding than the single-date case. It

requires a sequence of operations, including calibration to

radiance or at-satellite reflectance, atmospheric correction,

image registration, geometric correction, mosaicking, subset-

ting, and masking out clouds and irrelevant features. In the

preprocessing of multidate images the most critical steps are

the registration of the multidate images and their radiometric

rectification. To minimize errors, registration accuracies of a

fraction of a pixel must be attained. The second critical

requirement for change detection is attaining a common

radiometric response for the quantitative analysis for one or

more of the image pairs acquired on different dates. This means

that variations in solar illumination, atmospheric scattering

and absorption, and detector performance must be normalized,

i.e., the radiometric properties of each image must be adjusted

to those of a reference image (Coppin et al., 2004).

Detecting changes between two corrected images from

different dates can be accomplished directly by employing one

of several techniques, including postclassification comparison

and temporal image differencing (Dobson et al., 1995; Jensen,

1996; Lunetta and Elvidge, 1998). Postclassification compari-

son change detection requires rectification and classification of

the remotely sensed images from both dates. These two maps

are then compared on a pixel-by-pixel basis. One disadvantage

is that every error in the individual date classification maps

will also be present in the final change detection map.

Temporal image differencing minimizes this problem by

performing the traditional classification of only one of the two

time-separated images. One band from both dates of imagery is

then analyzed to find differences. Pixel difference values

exceeding a selected threshold are considered changed. A

change/no change binary mask is overlaid onto the second date

image, and only the pixels deemed to have changed are

classified in the second date imagery. This method usually

reduces change detection errors and provides detailed from–to

change class information (Jensen, 1996). As shown in Figure 4,

change analysis results can be further improved by including

probability filtering, allowing only certain changes and

forbidding others (e.g., urban to forest). A detailed, step-by-

step procedure for performing change detection was developed

by the NOAA Costal Change Analysis Program and is

described in Dobson et al. (1995) and Klemas et al. (1993).

SHORELINE TOPOGRAPHY AND BATHYMETRY

Topographic and hydrographic information are basic ele-

ments in studies of nearshore geomorphology, hydrology, and

sedimentary processes. In order to plan sustainable coastal

development and implement effective beach erosion control

and coastal ecosystem protection strategies, scientists and

coastal managers need information on long-term and short-

term changes taking place along the coast, including beach

profiles, changes due to erosion, wetlands changes due to

inundation, etc. (Klemas, 2009b).

Figure 4. Change detection using probability filters.

6 Klemas
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To map long-term changes of the shoreline due to beach

erosion, time series of historical aerial photographs and

topographic maps have been used. Aerial photographs are

available dating back to the 1930s, and topographic maps exist

to extend the record of shoreline change to the middle to late

1800s. Such data are held by local, state, and federal agencies,

including the U.S. Geological Survey (USGS) and the U.S.

Department of Agriculture Soil Conservation Service. They

also have various maps, including planimetric, topographic,

quadrangle, thematic, orthophoto, satellite, and digital maps

(Jensen, 2007; Rasher and Weaver, 1990). Time series of high-

resolution satellite images have also been used to map

shoreline changes, but with accuracies of the order of 1 m.

To perform a shoreline position analysis, the shoreline can be

divided into segments that are uniformly eroding or accreting.

Then the change in the distance of the waterline can be

measured in reference to some stable feature like a coastal

highway. The instantaneous water line in the image is not a

temporally representative shoreline. The high water line, also

referred to as the wet/dry line, is a commonly used indicator

because it is visible in most images. Other indicators include

the vegetation line, bluff line, or man-made shore vestments

(Boak and Turner, 2005; Thieler and Danforth, 1994). The GPS

and light detecting and ranging (LIDAR) have significantly

improved the techniques for shoreline position analysis and

beach erosion studies (Jensen, 2007; Morton and Miller, 2005).

A particularly effective approach for studying sand dynamics

along coastlines includes the combined use of airborne

hyperspectral data and airborne LIDAR data.

To study the bathymetry of submerged coastlines, LIDAR is

normally used. In LIDAR bathymetry a laser transmitter/

receiver mounted on an aircraft transmits a laser pulse that

travels to the air–water interface, where a portion of this

energy reflects back to the receiver. The remaining energy

propagates through the water column and reflects off the sea

bottom. The water depth is calculated from the time lapse

between the surface return and the bottom return. Since laser

energy is lost due to refraction, scattering, and absorption at

the water surface, at the sea bottom, and inside the water

column, these effects limit the strength of the bottom return

and limit the maximum detectable depth. As shown in Table 2,

the LIDAR system must have a kd factor large enough to

overcome the water depth and water turbidity at the study site

(k 5 attenuation coefficient; d 5 max. water depth). For

instance, if a given LIDAR system has a kd 5 4 and the turbid

water has an attenuation coefficient of k 5 1, the system will be

effective only to depths of about 4 m. Beyond that depth, one

may have to use acoustic echo-sounding techniques (Brock and

Sallenger, 2000).

More recently, GPSs, combined with new LIDAR techniques,

made it possible to obtain more accurate topographic and

bathymetric maps, including shoreline positions. LIDAR

surveys can now produce a 610 cm vertical accuracy at spatial

densities greater than one elevation measurement per square

meter. This is important for various coastal research applica-

tions of LIDAR, including mapping change along barrier island

beaches and other sandy coasts. The ability of LIDAR to rapidly

survey long, narrow strips of terrain is very valuable in this

application, since beaches are elongate, highly dynamic

sedimentary environments that undergo seasonal and long-

term erosion or accretion and are also impacted by severe

storms (Krabill et al., 2000; Stockdon et al., 2002).

In order to develop digital flood insurance maps and data for

habitat studies and vegetation identification, in 2005 the state

of Delaware contracted with USGS and NASA to produce high

detail elevation data using NASA’s experimental advanced

airborne research LIDAR, which was specifically designed to

measure submerged topography and adjacent coastal land

elevations. Emergency managers have been able to use these

data to develop statewide inundation maps and to incorporate

these data into flood and storm surge models to create an early

flood warning system (Carter and Scarborough, 2010).

The interferometric synthetic aperture radar (InSAR)

technique is also a good candidate as a data source for change

detection both on land and in coastal areas. It can be used

jointly with GPS and altimeter data, which helps to resolve the

integer ambiguity in InSAR phases. Some recent innovative

applications of InSAR together with altimeter observations

exist in the literature (Kim et al., 2009; Lu et al., 2009).

SUBMERGED AQUATIC VEGETATION AND
CORAL REEFS

In many parts of the world, the health of coral reefs has been

declining. Coral reefs react quickly to new stressors because

they thrive in a narrow range of environmental conditions and

are very sensitive to small changes in temperature, light, water

quality, and hydrodynamics. The decline of reefs is closely

linked to human activity, since the tropical coastlines that host

them are often heavily populated. Among the documented

impacts on corals are global climate change (e.g., increases in

sea surface temperature, sea level, CO2 saturation, frequency

and intensity of storms), shifts in water quality, and impacts

due to increased loading of sediment, overfishing, contami-

nants, and nutrients reaching coastal environments (Philpot et

al., 2004; Purkis et al., 2002).

Mapping submerged aquatic vegetation (SAV), coral reefs,

and general bottom characteristics requires high-resolution (1–

4 m) multispectral/hyperspectral imagery (Mishra et al., 2006;

Mumby and Edwards, 2002; Philpot et al., 2004; Purkis et al.,

2002). Coral reef ecosystems usually exist in clear water and

can be classified to show different forms of coral reef, dead

coral, coral rubble, algal cover, sand, lagoons, different

Table 2. LIDAR flight parameters (DGPS 5 differential GPS mode;

KGPS 5 kinematic GPS mode).

Flying height 200–500 m (400 m typical)

Vertical accuracy 615 cm

Horizontal accuracy DGPS 5 6 3 m; KGPS 5 6 1 m

Max mapping depth 60 m (clear water)

Typical kd product 4

Coastal k 0.2–0.8 (d 5 5–20 m)

Estuarine k 1.0–4.0 (d 5 1–4 m)

Sounding density 3–15 m

Sun angle 18u–25u (to minimize glare)

Scan geometry Circular (220 m swath typical)

Sea state Low (0–1 Beaufort scale)

Water penetration Green LIDAR (532 nm) used

Aircraft height IR LIDAR (1,064 nm) used
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densities of seagrasses, etc. SAV can grow in more turbid

waters and thus is more difficult to map. Aerial hyperspectral

scanners and high-resolution multispectral satellite imagers,

such as IKONOS and QuickBird, have been used in the past to

map SAV with accuracies of about 75%, for classes including

high-density seagrass, low-density seagrass, and unvegetated

bottom (Akins, Wang, and Zhou, 2010; Dierssen et al., 2003;

Mishra et al., 2006; Wolter, Johnston, and Niemi, 2005).

Recently available hyperspectral imagers should improve

the SAV and coral reef mapping results significantly (Maeder et

al., 2002; Porter et al., 2006; Purkis, Graham, and Riegl, 2008).

Major advances in using airborne hyperspectral sensors offer

the spatial and spectral capability to discern the subtle spectral

states of a reef that can be used as indicators of coral health.

Also, environmental variables describing the boundary condi-

tions around the reefs can be related to processes occurring on

the reefs themselves (Andréfouët and Riegl, 2004). The

majority of airborne hyperspectral radiometers are flexible in

that they can be ‘‘tuned’’ to the demands of a specific project,

such as mapping SAV or coral reefs (Wang, 2010).

REMOTE SENSING OF OCEAN CHLOROPHYLL
AND PRODUCTIVITY

The size and complexity of coastal waters makes it difficult to

monitor them with ships and buoys alone. Satellites with a

wide range of sensors are proving to be cost-effective for

observing large ocean and coastal areas. Some of the key ocean

properties that can be mapped from satellites are shown in

Table 3. As shown in the table, all electromagnetic wavelength

regions are employed. For instance, ocean color, chlorophyll,

and productivity can be obtained with multispectral and

hyperspectral imagers operating primarily in the visible part

of the spectrum. Sea surface temperatures can be mapped with

thermal infrared sensors (TIR) and ocean salinity with passive

microwave radiometers.

In the open ocean, biological productivity can be estimated by

measuring the chlorophyll a concentration. It is the primary

substance determining the color of so-called Case 1 waters. As

shown in Table 4, satellites with multispectral and hyperspec-

tral imagers, such as sea-viewing wide-field-of-view sensor

(SeaWiFS) and MODIS, were specifically designed to monitor

ocean chlorophyll concentrations and sea temperatures on a

global scale (Martin, 2004; Oliver et al., 2004). With the help of

calibration data from buoys and ships, these satellites have been

able to map chlorophyll concentrations with acceptable accuracy.

Satellite remote sensors measure the spectral radiances at

the top of the atmosphere from which (after atmospheric and

other corrections) the spectral radiances emerging from the

ocean surface are extracted (Bagheri, Reijkober, and Gons,

2002). The surface radiances are converted to reflectances,

providing us with the spectral signatures required for

identifying chlorophyll and other water constituents (McClain

et al., 2006; Philpot, 2007; Schofield et al., 2004). To produce

valid products, such as ocean chlorophyll concentrations for

estimating primary productivity, a meticulous calibration and

validation approach must be used. Instrumented ships, buoys,

and ocean gliders are used to calibrate and validate chlorophyll

a and total suspended sediment maps obtained with ocean color

sensors. Some typical ship or buoy measurements are shown in

Table 5. In coastal and estuarine waters these data must

usually be obtained very close to the satellite overpass time and

be statistically representative of prevailing conditions. The

water samples are normally taken from the upper half meter of

the water column. Sites for calibrating remotely sensed data,

such as chlorophyll a concentrations in coastal waters, must be

located at well-known points representing the entire range of

variables to be measured (Barnes et al., 2003).

Table 3. Spaceborne ocean sensing techniques. Modified from Pinet (2009), with permission of Jones and Bartlett Learning, Sudbury, Massachusetts. www.

jblearning.com (Adapted from Robinson, 1985).

Sensor Type Type of Measurement Oceanographic Application

Visible and NIR radiometer and imager Backscattered solar radiation from surface layer Surface water turbidity; phytoplankton

concentration

TIR radiometer and imager Thermal emission from sea surface Sea surface temperature; surface heat flux

Microwave radiometer and imager Sea surface microwave emission Sea surface temperature; surface heat flux; salinity;

sea state; soil moisture

Radar altimeter (nadir-looking) Return time of pulse; shape of return pulse Ocean currents and tides; significant wave height

Radar scatterometer (side-looking radar) Strength of return pulse from different directions Surface wind speed and direction

SAR (high-resolution imaging radar) Strength of return pulse from small area (Doppler

shift of wave frequency with distance)

Swell patterns; internal wave patterns; oil slicks

Table 4. Some satellite remote sensing systems used to measure ocean color. Note that the MODIS instrument is carried aboard two platforms (Terra and

Aqua). Modified from Jensen (2007). Printed and electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, New Jersey (CZCS

5 coastal zone color scanner; MERIS 5 medium-resolution imaging spectrometer; ESA 5 European Space Agency).

Sensor Agency Satellite Operating Dates Spatial Resolution (m) Number of Bands Spectral Coverage (nm)

CZCS NASA Nimbus-7 1978–86 825 6 433–12,500

SeaWiFS NASA OrbView-2 Launch 1997 1,100 8 402–885

MODIS-Terra NASA Terra Launch 1997 250/500/1,000 36 405–14,385

MODIS-Aqua NASA Aqua Launch 2002 250/500/1,000 36 405–14,385

MERIS ESA Envisat-1 Launch 2002 300/1,200 15 412–1,050
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The open ocean is biologically quite unproductive when

compared to the shallow waters of the continental shelves and

coastal upwelling areas. On the continental shelves, nutrients

are supplied by rivers and by wave mixing of surface and

bottom water. There are also upwelling regions that owe their

high productivity to the persistent upward flow of deep water,

which continually charges the photic zone with nutrients.

Therefore, some of the world’s largest fisheries are located in

upwelling areas, such as the main ones located on the west

coasts of North and South America, the west coast of Africa,

and off the coast of Somalia. Ocean color sensors and thermal

infrared imagers have been used quite successfully to monitor

these upwelling areas and estimate their productivity (Pinet,

2009).

As one approaches the coast and enters the bays and

estuaries, the water becomes quite turbid and contains

suspended sediment, dissolved organics, and other substances,

in addition to chlorophyll. To identify each substance in this

complex mixture of Case 2 waters requires hyperspectral

sensors and more sophisticated algorithms than the empirical

regression models used in Case 1 waters in the open ocean

(Bagheri, Peters, and Yu, 2005; Cannizzaro and Carder, 2006;

Ikeda and Dobson, 1995; Schofield et al., 2004; Sydor, 2006).

Neural network approaches have been used to map chlorophyll

and suspended sediment concentrations in Delaware Bay and

other estuaries (Keiner and Brown, 1999). Neural networks,

however, require extensive ‘‘training’’ with coincident ship and

satellite observations of radiance, and shipboard measure-

ments of chlorophyll and sediment concentrations. These data

are needed for adjusting the neural network parameters (i.e.,

synaptic weights between neurons in different layers).

Using platforms such as ocean gliders, remotely operated

vehicles (ROVs), and autonomous underwater vehicles (AUVs),

with advanced optical and acoustic sensors, marine scientists

can now perform high-resolution three-dimensional measure-

ments of biological and physical ocean features at various

depths. They can view thin layers of high biological productiv-

ity at different depths and study the response of planktonic

distributions and processes to physical forcing across a wide

range of temporal and spatial scales. For instance, thin layers

require resolutions of centimeters, whereas previous ship

measurements were performed at meter depth intervals,

completely missing these biologically active and important

layers (Cowles and Donaghay, 1998; Marine Technology

Reporter, 2010; Schofield et al., 2004).

OBSERVING EUTROPHICATION AND
HAZARDOUS ALGAL BLOOMS

High concentrations of nutrients exported from agriculture

or urban sprawl in coastal watersheds, or produced by coastal

upwelling, are causing algal blooms in many estuaries and

coastal waters. Algal blooms are harmful in that they cause

eutrophic conditions, depleting oxygen levels needed by organic

life and limiting aquatic plant growth by reducing water

transparency. Some species of algae contain potent toxins that,

even in low concentrations, can be very detrimental to marine

life. This toxicity can propagate through the food chain, posing

a serious threat as the contaminated organisms are consumed

by predators. Seabirds, marine mammals, and even humans

are at risk of illness or death if they eat shellfish tainted with

algal toxins.

Most algal blooms can be observed from satellites because of

their distinct color, location, or repetitive seasonal appearance.

Concentrations of chlorophyll a (Chl a) and total suspended

sediments can be used as indicators of the severity of

eutrophication and turbidity, respectively. Another promising

approach is to detect the environmental conditions suitable for

bloom development and to track the progress of a bloom as it

moves in from offshore (Jernakoff et al., 1996). This technique

could allow prediction of when and where a coastal region

would be affected by a hazardous algal bloom (HAB).

One such example is the tracking of sea surface temperature

(SST) features, such as fronts, where HAB species are likely to

accumulate, using advanced very high resolution radiometer

(AVHRR) data (Chang et al., 2002; Keafer and Anderson, 1993;

Tester et al., 1991). Alternatively, variations in ocean color can

be used for the detection of anomalously high chlorophyll

content that may indicate an impending bloom (Miller et al.,

2006; Stumpf, 2001). Along these lines, the NOAA Coastwatch

program began in 1999 to acquire SeaWiFS imagery routinely,

for the purpose of developing an accurate coastal algorithm for

chlorophyll. As detailed by Tomlinson et al. (2004), this effort

was in turn used as an early warning system for HAB

occurrences off the west Florida coast. Chlorophyll anomalies

identified in SeaWiFS imagery were combined with wind

vector data in attempts to locate and predict the transport of

the toxic dinoflagellate Karenia brevis. A bulletin was issued

warning of HAB occurrences (Stumpf et al., 2003). The

advantage of SeaWiFS imagery is that it provides data with a

swathwidth on the order of 1,000 km and a resolution of 1 km.

Repeat coverage of an area occurs approximately every 1 to

2 days.

If broad criteria are used to compare estuarine water quality

and eutrophication levels, as shown in Table 6, it is possible to

get satisfactory results with sensors having fewer spectral

bands and lower signal-to-noise ratios than the hyperspectral

imagers needed for measuring precise concentration levels.

Most riverine and estuarine plumes and some ocean-dumped

waste plumes can be detected remotely due to their strong

surface signatures caused by high turbidity. The drift and

Table 5. Key remote sensing related ship measurements.

Direct measurements

Temperature

Secchi depth

Attenuation coefficient

Spectral reflectance (radiance and irradiance)

Salinity

pH

Water sample analysis

Chl a

Total suspended sediments

Dissolved organics

Nitrogen

Phosphorus

Ship data acquisition

Water samples obtained from upper 0.5 m of water column
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dispersion of coastal plumes and ocean-dumped waste have

been tracked with multispectral satellite imagery. To study the

dynamics of such plumes one can use a small number of

multispectral bands; however, to detect the composition and

concentration of their content is difficult, even with hyperspec-

tral images (Klemas and Philpot, 1981; Ritchie, Zimba, and

Everitt, 2003; Sarabun, 1993).

SEA SURFACE TEMPERATURE

Accurate large-scale, long-term observations of SST are

important to a wide range of oceanographic studies. Sea surface

temperatures are necessary, for example, for estimating the

source of heat at the air–sea boundary. Sea surface tempera-

ture and salinity are also important input data for estimating

the steric component of the sea level, which is important for

coastal studies. High-resolution satellite-derived SST mea-

surements are ideal for investigating western boundary

currents, such as the Gulf Stream and Kuroshio, which exhibit

displacements on large temporal and spatial scales. Another

global-scale event that appears linked to elevated SSTs is

damage to coral reefs. Long time series of accurate, global SSTs

are needed to monitor the health of the Earth’s coral reefs,

which support a large diversity of sea life. Sea surface

temperature data has also been used by the fish and wildlife

communities to study habitats over many parts of the globe.

Thermal infrared sensors have been deployed for over

30 years on operational meteorological satellites to provide

images of cloud top and SSTs. This was the first method of

remote sensing to gain widespread acceptance by the oceano-

graphic and meteorological communities. One reason for the

early success of measuring SST is as follows. Since the TIR

radiance depends on both the temperature and emissivity of

the target, it is difficult to measure land surface temperatures,

since the emissivity will vary as the land cover changes. On the

other hand, over water the emissivity is known and nearly

constant (98%), approaching the behavior of a perfect black-

body radiator. Thus the TIR radiance measured over the oceans

will vary primarily with the sea surface temperature (SST) and

allow one to determine the SST accurately (60.5uC) if some

atmospheric corrections are included (Ikeda and Dobson, 1995;

Martin, 2004).

Beginning in 1981 with the launch of the AVHRR on NOAA-

7, there now exist nearly three decades of IR satellite SST

observations. These contribute to multiyear global climate

studies and to regional support of fisheries, ship routing,

physical oceanography research, and weather forecasting.

Examples of long-term studies include the changes in SST

patterns associated with such interannual climate variations

as the La Niña and El Niño cycles in the equatorial Pacific and

Atlantic.

A particularly pertinent use of near–real-time SST data

products for monitoring changing climate is the NOAA ‘‘Coral

Bleaching Virtual Station Program’’ (Liu et al., 2005). Here,

both a web portal and Google Earth are used to freely

disseminate information concerning the likelihood that select-

ed coral reef sites around the world will be damaged by warmer

than usual sea temperatures. The products are entirely derived

from the AVHRR satellite sensors, requiring no in situ

validation (hence use of the term ‘‘virtual’’). This aspect of the

program is important since many of the sites covered are so

remote that routine ship or buoy monitoring is unfeasible

(Purkis et al., 2002).

Another important application of sea surface temperature

sensing is in studies of coastal upwelling, where rising cold

water brings nutrients to the surface, inducing phytoplankton

and zooplankton to grow and attract large concentrations of

fish. Upwelling areas, such as the one off Peru’s coast, and their

condition can be observed by satellites with thermal IR

imagers, such as AVHRR, or ocean color sensors, including

SeaWiFS (Martin, 2004; Schofield et al., 2004; Yan et al., 1993).

When wind patterns over the Pacific Ocean change, warm

waters from the Western Pacific shift to the Eastern Pacific and

the upwelling of nutrient-rich cold water off the Peruvian coast

is suppressed, resulting in well-recognized El Niño conditions.

Thus during an El Niño episode there is little upwelling of

nutrient-rich water, causing the fish population to drop to

disastrous levels.

SEA SURFACE SALINITY

Sea surface salinity (SSS) is critical for determining the

global water balance, for understanding ocean currents, and for

estimating evaporation rates. Also, low-salinity water is

frequently indicative of fresh water sources, like rivers, feeding

the ocean. Such river ‘‘plumes’’ can transport natural and man-

made river-borne contaminants into the sea and can directly

stress marine ecosystems that are adapted to higher salinity

levels. Airborne microwave radiometers can measure sea

surface salinity and have been used in many applications,

such as determining the structure and influence of river

plumes on the Great Barrier Reef, since the input of freshwater

plumes from rivers is a critical consideration in the study and

management of coral and seagrass ecosystems (Burrage et al.,

2003; Burrage, Wesson, and Miller, 2008).

In microwave radiometry, the power received by the

radiometer antennae is proportional to the microwave emis-

sivity and temperature of the ocean surface. Salts dissolve in

water creating charged ions and anions. These charged

particles increase the reflectivity and decrease the emissivity

of the water. Thus, if the water temperature can be obtained by

Table 6. General water quality levels.

Level Measurement

Water quality vs. Chl a concentration

Oligotrophic ,8 mg/L

Mesotrophic 8–25 mg/L

Eutrophic .25 mg/L

Water quality vs. total suspended sediments

Clear 0–10 mg/L

Moderately turbid 10–50 mg/L

Highly turbid .50 mg/L

Examples

Delaware Bay is mesotrophic and

moderately to highly turbid

Chesapeake Bay is mesotrophic to

eutrophic and moderately turbid
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other means such as thermal IR radiometers, the salinity can

be deduced from the received power. Salinity is measured in

units of parts per thousand (ppt). Average seawater has a

salinity of about 35 ppt. This means that the dissolved salt

occurs in a concentration of 35 parts per thousand, or 3.5%,

with the remaining 96.5% being water molecules. Another set

of units used to measure salinity, which are related to the

conductivity of the water, are practical salinity units (psu).

Their numerical values are identical to ppt units. For instance,

the sea surface salinity map in Figure 5, obtained with an

airborne microwave radiometer, shows that the surface water

salinity across the mouth of Chesapeake Bay ranges from about

12 psu to 30 psu (Miller and Goodberlet, 2004).

Sea surface salinity has been the most important oceanic

variable that until recently has not been measured from

satellites. There are now instruments designed to provide SSS

from satellite orbit. For instance, the European Soil Moisture

and Ocean Salinity satellite uses a fixed two-dimensional

interferometric antenna. The satellite will retrieve salinity

with an accuracy of 0.1–0.2 precision salinity units (psu) at a

resolution of about 50 km (Martin, 2004; Robinson, 2004).

OIL SPILL DETECTION AND TRACKING

Oil spills can destroy marine life as well as wetland and

estuarine animal habitat. To limit the damage by a spill and

facilitate containment and cleanup efforts, the shipping

operators, oil companies, and other responsible agencies must

rapidly obtain information on spill location; size and extent of

the spill; direction and speed of oil movement; and wind,

current, and wave information for predicting future oil drift

and dispersion.

Most of the large oil spills in the oceans stem from tanker

groundings, break-ups, and collisions, resulting in a large

fraction of the oil spreading along the surface of the ocean and

endangering marine and coastal ecosystems. They are also

caused by tankers releasing their ballast water. In most of these

cases a wide range of remote sensors have provided the required

data for tracking and predicting the future movement of the

spilled oil in a timely and reliable manner, helping guide rescue

and defensive efforts, including the deployment of skimming

vessels and protective booms. Users of remotely sensed data for

oil spill tracking include the Coast Guard, environmental

protection agencies, oil companies, shipping/insurance/fishing

industries, and defense departments (Klemas, 2010).

For oil spill emergencies the main operational data require-

ments are fast turn-around time and frequent imaging of the

site to monitor the dynamics of the spill. Remote sensors on

satellites and aircraft meet these requirements by tracking the

spilled oil at various resolutions and over wide areas at

frequent intervals through multitemporal imaging. They also

provide key inputs to drift prediction models and facilitate

targeting of clean-up and control efforts. Most of these sensors

use electromagnetic waves, even though acoustic sensors on

boats and cameras on submerged robot-like vehicles may have

to be used to view the subsurface behavior of the oil.

Table 7 summarizes the various ways of detecting oil slicks

on water using electromagnetic waves. In the ultraviolet region

oil fluoresces and thus appears to have a significantly higher

reflectivity than water, even for very thin slicks. However,

ultraviolet light is strongly scattered by the atmosphere and, in

order to avoid such scattering, can be used only on aircraft at

low altitudes. Ultraviolet sensors can also be confused by sun

glint, wind slicks, and biogenic materials. To minimize this

confusion, they are sometimes used in combination with other

sensors, such as thermal IR or radar.

Visible wavelengths are used more commonly due to the

availability of relatively inexpensive digital cameras on aircraft

and multispectral imagers on satellites. There is also a

reasonable atmospheric transmission window for visible

wavelengths. In the visible region oil has a slightly higher

reflectivity than water and can be even more readily detected if

horizontally aligned filters are used. Oil sheen shows up as

silvery and reflects light over a wide spectral region. Heavy oil

appears brown, peaking in the 600 to 700 nm region, while

mousse looks red-brown and peaks closer to 700 nm. Image

analysts have to contend with many false signals at visible

Figure 5. Sea surface salinity map of lower Chesapeake Bay produced

from the salinity, temperature, and roughness remote scanner (STARRS)

airborne salinity imager. The instrument is an L-band (1.4 GHz)

microwave radiometer. A pronounced gradient in salinity (delivered in

practical salinity units [psu]) is evident across the mouth of the bay.

Modified with permission from Miller and Goodberlet (2004).
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wavelengths, including sun glint, wind slicks, or biogenic

material that can be mistaken for oil sheens. In some cases, sun

glint can have a positive effect by enhancing the appearance of

oil slicks and sheen. Improvements in sensor technology have

led to the development of hyperspectral sensors, such as the

airborne visible/infrared spectrometer and the airborne imag-

ing spectrometer (AISA). A hyperspectral image consists of

tens to hundreds of spectral bands and can provide a detailed

spectral identification of a feature, such as differentiating

between light and crude oil and detecting small concentrations

of oil (Brecke and Solberg, 2005; Jensen, 2007).

At thermal IR wavelengths ‘‘optically thick’’ oil layers absorb

solar radiation and reemit it as thermal energy in the 8 to 14 mm

region. Thin oil slicks or sheen cannot be detected by thermal

IR sensors. However, layers thicker than about 150 mm appear

hot or bright, while layers less than about 50 mm appear cool

and dark. There have been several theories proposed to explain

the switch of the oil from ‘‘hot’’ to ‘‘cold’’ as the thickness of the

slick decreases, but this change is not yet fully understood. This

variability in apparent temperature may help distinguish thick

layers of oil from thin layers, yet it also can cause interpreters

to have difficulty distinguishing oil from water (Jha, Levy, and

Gao, 2008).

Radar imagers such as side-looking airborne radar on aircraft

and synthetic aperture radar (SAR) on satellites have the major

advantage of not being bothered by cloud cover and other

atmospheric effects, which frequently eliminate visible and IR

wavelengths from contention (Table 7). Features found fre-

quently in SAR data are regions of low backscatter caused by

the presence of oil or other slicks on the sea surface. Synthetic

aperture radar imagers view the ocean surface at incidence

angles between approximately 20u and 30u from the local

vertical. Capillary waves and short gravity waves cause the

radar pulse to be scattered, including some backscattering to the

radar transmitter. As short surface gravity waves or capillary

ripples propagate through a region where an oil film is present,

their energy is absorbed as the surface film strains, causing

damping of these short waves. The film-covered area backscat-

ters less energy to the radar receiver, since most of the radar

pulse is reflected from the flatter surface, somewhat like light

from a mirror in optics, sending the radar energy in the opposite

direction, away from the radar antenna. Thus ocean surface

areas covered by oil or other slicks show up as dark in radar

images. For this to work, low to moderate winds must exist to

create the short surface waves. Since the short waves being

dampened are similar in wavelength to waves used by C- and X-

band SARs, Bragg reflection can cause a strong radar return

(Brecke and Solberg, 2005; Martin, 2004; Robinson, 2004).

When analyzing SAR images to distinguish oil slicks from

other surface films, such as organic films generated by natural

biological processes or wind-generated slicks, one must

consider additional information. This can include the general

shape of the slick, its proximity to oil tanker routes or oil

drilling platforms, the local wind speed, and other dynamic

causes, such as internal waves and ocean fronts. Large ocean

internal waves on continental shelves strongly influence

acoustic wave propagation; submarine navigation; mixing

nutrients to euphotic zone; sediment resuspension; cross-shore

pollutant transport; and coastal engineering and oil explora-

tion. The water column is frequently not homogeneous, but

stratified. Internal waves move along pycnoclines, which are

surfaces that separate water masses of different densities. The

larger internal waves can attain heights in excess of 20 m. The

period of the internal wave packets approximates the period of

the tides, suggesting a cause-and-effect relationship. Internal

waves can be detected visually and by radar, since they cause

local currents that modulate surface wavelets and slicks, which

can be detected by radar (Zhao et al., 2004).

Oil on top of the ocean is a stronger emitter of microwave

radiation than water and therefore appears as a bright feature

on a darker sea. The emissivity of oil is about 80%, while that of

water is only about 40%. Therefore a passive microwave

radiometer can detect the difference in emissivity and map

the oil slicks. However, this technique has not been used much,

because the signal-to-noise ratio is poor, the signal strength

varies with oil layer thickness in a cyclical fashion, and other

surface materials can cause false alarms (Brecke and Solberg,

2005).

Past applications indicate that radar and multispectral

(visible/near-IR) scanners are most effective for detecting and

tracking oil slicks over large ocean or coastal areas. Agencies

like the Coast Guard perform their more detailed aerial

surveillance using integrated multisensor systems, including

X-band side-looking radars, IR/ultraviolet line scanners, active

gated television, and aerial reconnaissance cameras. At

medium altitudes these side-looking radars provide ship and

oil spill detection and mapping out to 80 miles on both sides of

the aircraft. The real-time television cameras provide day/

night high-resolution real-time detection and identification.

The reconnaissance cameras provide high-resolution daytime

documentation.

REMOTE SENSING OF PHYSICAL
OFFSHORE PROCESSES

Currents and waves strongly affect coastal ecosystems,

especially in the nearshore, which is an extremely dynamic

Table 7. Applicability of electromagnetic (EM) wave bands for oil detection.

EM Band Wavelength

Detection

Mechanism

Contrast vs.

Water Thickness

Night

Operation

Weather

Limitations

False

Targets

Ultraviolet 0.3–0.4 mm Reflectivity fluorescence Bright No No Clear Low

Visible bands 0.4–0.7 mm Reflectivity Bright No No Clear High

Reflected IR 0.7–3 mm Reflectivity Bright No No Clear High

TIR 3–14 mm Emissivity Dark/bright Relative Yes Light fog Medium

Radar 1–30 cm Damped ripples Dark No Yes Heavy fog and rain High

Passive microwave 0.2–0.8 cm Emissivity reflectivity Bright Relative Yes Heavy fog and rain Low
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environment. Currents influence the drift and dispersion of

various pollutants, and together with breaking waves mobilize

and transport sediments, resulting in erosion and morpholog-

ical evolution of natural beaches. On a coastal scale, predicting

the motion of a patch of water containing a toxic red tide algal

bloom or industrial waste is vital for planning appropriate

reactive measures. To predict the local movement of pollutants,

one must track the currents in the area. Current meters are not

effective for determining surface currents over large coastal

regions, since current meters measure currents only at a point.

On the other hand, radar sensors on satellites can measure sea

surface currents over large areas and monitor the dynamic

behavior of ocean and coastal waters.

Hydrodynamic models are commonly used to study the

physical forces, such as currents, winds, and waves, acting on

coastal and estuarine ecosystems. Hydrodynamic models

require physical data on river flow, tides, winds, current

patterns, waves, etc. Many of these data can be obtained using

remote sensors on satellites and aircraft, with calibration and

validation performed by a relatively small number of field or

ship measurements (Robinson, 2004). As shown in Table 3,

physical ocean properties can be measured with various radar

instruments, such as winds with scatterometers, sea surface

elevation and currents with altimeters, and sea surface slicks

and waves with SAR. These measurements are used by

oceanographers to study the ocean and coastal circulation, its

large-scale, low-frequency variability, biological mixing, tur-

bulent eddy energy, and air–sea interaction (Martin, 2004;

Robinson, 2004). There are also some indirect space geodetic

techniques like Gravity Recovery and Climate Experiment

(GRACE) and Gravity Field and Steady-State Ocean Circula-

tion Explorer (GOCE) missions, which provide valuable

information on ocean currents globally and regionally, as well

as the variations in the ocean mass and its redistribution.

Radar altimeters, scatterometers, and SAR imagers are of

particular value because they provide real-time accurate

information on ocean elevation, currents, winds, and waves.

The application of these radars depends on the character of the

pulse emitted and on what properties of the reflected pulse are

measured. Satellite altimetry produces unique global mea-

surements of instantaneous sea surface heights relative to a

reference surface and is one of the essential tools for monitoring

ocean surface conditions, including sea level, tidal circulation,

and ocean currents. For the nadir-pointing altimeter the

timing of the returned pulse after reflection from the ocean

surface, knowing the speed of light (electromagnetic waves),

allows one to measure the distance between the radar and the

sea surface. From the altimeter-measured range, the instan-

taneous sea surface relative to a reference surface, such as an

ellipsoid, can be determined if the satellite orbit relative to the

reference surface is known. With the knowledge of the oceanic

geoid, the sea surface topography relative to the geoid due to

ocean dynamic circulation, including the temporal averages,

can be mapped. Repeated observations can provide a measure-

ment of the temporal variability of the sea surface height, since

the geoid can be treated as time-invariant for oceanographic

applications. Even though this is true, at present one can

compute the geoid with a temporal resolution of 1 month using

only gravity dedicated satellites like GRACE and GOCE

(Elachi and van Ziel, 2006; Ikeda and Dobson, 1995; Robinson,

2004).

For monitoring SLR along a specific coast or wetland, tide

gauge stations provide useful information. If continuous GPS

receivers are colocated at these stations, these data can be

useful for linking the observed sea level to a vertical datum and

also distinguishing the continental uplift/subsidence from the

SLR.

Oblique-viewing radar instruments, which measure the

backscatter from the sea surface, can be divided into two types.

Those that measure average backscatter from a wide field-of-

view are called scatterometers and are used primarily to

measure wind characteristics, which create the surface

roughness. Winds transfer energy to the surface layer of the

sea, causing ripples. The ripples can develop into wavelets and

waves in proportion to the magnitude and direction of the

winds. Satellites equipped with radar scatterometers use the

sea state to estimate the near-surface wind speed and direction

(Figure 6). Thus a scatterometer is a sensor that measures the

return reflection or scattering of microwave (radar) pulses sent

at an oblique angle to the ocean surface from a satellite. A

rough ocean surface reflects back (backscatters) to the antenna

on the satellite a stronger signal than a smooth ocean surface

because energy from the radar signal is reflected back more

effectively when steeper waves are present than when the

ocean surface is relatively smooth.

Radars that have a much finer spatial resolution, called

imaging radars, such as SAR, provide maps of sea surface

roughness capable of defining a variety of small and mesoscale

ocean characteristics, such as wave fields, and can also track

the actual oil slicks. High-resolution (10 m) SAR instruments

can reveal detailed patterns of ocean waves, including

wavelength (spectrum) and direction. The reason waves and

swells are visible in SAR images is that the capillary waves

Figure 6. Hurricane Katrina generated surface winds observed by the

QuickSCAT scatterometer. The arrows indicate the direction of the surface

wind while the colors show the speed. Courtesy: W. Timothy Liu and

Xiaosu Xie, NASA/JPL.
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associated with Bragg scatter form preferentially on and just

ahead of the wave crests, in part because of the curvature and

in part because the troughs are sheltered from the winds while

the crests are exposed. This variation in capillary wave

amplitude creates the observed bright/dark pattern delineat-

ing wave fields on SAR images (Martin, 2004). Since these are

active microwave systems, they penetrate clouds and function

in all weather. Synthetic aperture radar is carried by satellites

in low Earth orbits pointing in a direction that is at 90u to the

direction of travel with its axis tilted between 15u and 60u from

the local vertical (Elachi and van Ziel, 2006; Ikeda and Dobson,

1995; Robinson, 2004).

Closer to the coast, shore-based high-frequency (HF) and

microwave Doppler radar systems can be used to map currents

and determine swell-wave parameters over large areas with

considerable accuracy (Bathgate, Heron, and Prytz, 2006;

Graber et al., 1997; Paduan and Graber, 1997; Teague,

Vesecky, and Fernandez, 1997). The surface current measure-

ments use the concept of Bragg scattering from a slightly rough

sea surface, modulated by Doppler velocities of the surface

currents. High-frequency radars can determine coastal cur-

rents and wave conditions over a range of up to 200 km

(Cracknell and Hayes, 2007). For instance, Coastal Ocean

Dynamics Application Radar (CODAR) is becoming an integral

component of integrated ocean observing systems and is

already being used to measure real-time currents in support

of search and rescue operations and various scientific studies

(Kohut et al., 2008). While HF radars provide accurate maps of

surface currents and wave information for large coastal areas,

their spatial resolution, which is about 1 km, is more suitable

for measuring mesoscale features than small scale currents. On

the other hand, microwave X-band and S-band radars have

resolutions of the order of 10 m yet have a range of only a few

kilometers.

Estimates of currents over large areas, such as the

continental shelves, can also be obtained by tracking the

movement of Lagrangian drifters or natural surface features,

which differ detectably in color or temperature from the

background waters. Examples of such tracked natural features

include chlorophyll plumes, patches of different water temper-

ature, and surface slicks (Breaker et al., 1994). One can also use

ocean drifters, which can be specifically designed to track the

movement of water (currents) at various depths. A typical

design of typical Lagrangian drifters includes a float or surface

buoy connected by cable to a current drogue (Klemas and

Philpot, 1981). The surface float provides buoyancy, contains

the electronics, and transmits data to satellites. The satellites

determine the drifter’s position and relay the data to ground

stations. The drogue, set for a specific depth, acts like an

underwater sail as it is pushed by the ocean current. Ocean

drifters may also contain various instruments to measure

water temperatures and a variety of other parameters. Ships

and aircraft can drop these durable drifter buoys into the sea,

where they normally have a survival rate of several hundred

days (Davis, 1985).

As shown in Table 5, ships and buoys can provide valuable

data, including water samples from various depths for chemical

analysis to obtain the concentrations of chlorophyll, suspended

sediments, dissolved organics, oil, and local meteorological

information. For measuring oceanographic properties and

concentrations over greater depths, such as the oil distribution

after the Deepwater Horizon accident in the Gulf of Mexico,

there is a wide range of remotely controlled robot vehicles

available, which can provide vertical profiles of ocean temper-

ature, salinity and other data. These ROVs, AUVs, and ocean

gliders can carry various instruments, including visible

cameras and acoustic sensors, such as side-scan sonar for

observing subsurface features, such as oil plumes (Schofield,

Kohut, and Glenn, 2008).

SUMMARY AND CONCLUSIONS

Advances in technology and decreases in cost are making

remote sensing and geographic information systems practical

and attractive for use in coastal ecosystem studies and

management. They are also allowing researchers and manag-

ers to take a broader view of ecological patterns and processes.

Environmental indicators that can be detected by remote

sensors are available to provide quantitative estimates of

coastal and estuarine habitat conditions and trends. Such

indicators include percentage of impervious watershed area,

natural vegetation cover, buffer degradation, wetland loss and

fragmentation, wetland biomass change, invasive species,

water turbidity, chlorophyll concentration, eutrophication,

etc. Advances in the application of GIS and various models,

help to combine remotely sensed images with other georefer-

enced data layers, such as digital elevation models, thus

providing a convenient means for modeling ecosystem behav-

ior. A good example is the predictive modeling of the impact of

SLR on coastal wetlands.

New satellites, carrying sensors with fine spatial (1–4 m) and

spectral (200 narrow bands) resolutions are providing the

means for more accurately detecting changes in coastal

ecosystem health, including biological productivity and habitat

quality. Thermal IR imagers and new satellite microwave

radiometers are able to map sea surface temperatures, salinity,

and soil moisture. Radar scatterometers, altimeters, and

imagers (SAR) are providing more accurate information on

sea surface winds, elevation, currents, wave fields and oil

slicks, which can now be used in models to predict storm impact

on coastal ecosystems and oil spill drift and dispersion. There

are various international observing systems and databases,

such as the Global Geodetic Observing System and the Global

Earth Observing System of Systems, which aim to gather/

archive and release all the available data sets for monitoring

regional and global environmental processes and make the

data available for environmental research, hazard mitigation,

etc. At the same time, advanced software is being developed for

analyzing satellite data and using it in models more effectively.

Ocean platforms, such as ocean gliders, ROVs, AUVs, and

optical and acoustic sensors are now available for performing

high-resolution three-dimensional measurements of biological

and physical ocean features, including thin layers of high

biological productivity or submerged oil plumes emanating

from deepwater oil spills at various ocean depths. When these

new techniques for generating, organizing, storing, and

analyzing spatial information are combined with watershed,

hydrodynamic, water quality, and living resource models,
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coastal managers and scientists will have better means for

assessing the impacts of alternative management practices on

coastal ecosystems and taking corrective action early, when it

is most effective.
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