
Introduction to Python
for Biologists

Lecture 3: Biopython

Dr. Pushpalatha G.
Associate Professor,

Dept of Plant Biotechnology,
MSSSoA, CUTM

Learning Objectives

• Biopython is	a	toolkit
• Seq objects	and	their	methods
• SeqRecord objects	have	data	fields
• SeqIO to	read	and	write	sequence	
objects
• Direct	access	to	GenBank with	
Entrez.efetch
• Working	with	BLAST	results

Modules
• Python	 functions	are	divided	into	3	sets

– A small	core	set	that	are	always	available	
– Some	built-in	modules	such	as	math and	os that	can	be	imported	from	

the	basic	install	(ie.		>>>	import	math)
– An	extremely	large	number	of	optional	modules	that	must	be	

downloaded	and	installed	before	you	can	import	them
– Code	that	uses	such	modules	is	said	to	have	“dependencies”

• The	code	for	these	modules	are	located	in	different	places	on	
the	internet	such	as	SourceForge,	GitHub,	and	developer’s	
own	websites	(Perl	and	R	are	better	organized)

• Anyone	can	write	new	Python	modules,	and	often	several	
different	modules	are	available	that	can	do	the	same	task

Download	a	file

• urllib()	is	a	module	that	lets	Python	download	
files	from	the	internet	with	the	.urlretrieve
method

>>>	import	urllib
>>>urllib.urlretrieve('http://biopython.org/SRC/biopyth
on/Tests/GenBank/NC_005816.fna',	'yp.fasta')

• Biopython is	an	integrated	collection	of	modules	for	
“biological	computation”	including	tools	for	working	
with	DNA/protein	sequences,	sequence	alignments,	
population	genetics,	and	molecular	structures

• It	also	provides	interfaces	to	common	biological	
databases	(ie.	GenBank)	and	to	some	common	
locally	installed	software	(ie.	BLAST).	

• Loosely	based	on	BioPerl

Biopython Tutorial

• Biopython has	a	“Tutorial	&	Cookbook”	:	
http://biopython.org/DIST/docs/tutorial/Tutorial.html

by:	Jeff	Chang,	Brad	Chapman,	Iddo Friedberg,	Thomas	Hamelryck,	
Michiel de	Hoon,	Peter	Cock,	Tiago	Antao,	Eric	Talevich,	Bartek Wilczyński

from	which,	most	of	the	following	examples	are	drawn

Object	Oriented	Code

• Python	uses	the	concept	of	Object	Oriented	
Code.	

• Data	structures	(known	as	classes)	can	contain	
complex	and	well	defined	forms	of	data,	and	
they	can	also	have	built	in	methods

• For	example,	many	classes	of	objects	have	a	
“print”	method

• Complex	objects	are	built	from	other	objects

The	Seq object
• The	Seq object	class	is	simple	and	fundamental	for	a	lot	of	

Biopython work.	A	Seq object	can	contain	DNA,	RNA,	or	
protein.

• It	contains	a	string	(the	sequence)	and	a	defined	alphabet	
for	that	string.	

• The	alphabets	are	actually	defined	objects	such	as	
IUPACAmbiguousDNA or	IUPACProtein

• Which	are	defined	in	the	Bio.Alphabet module
• A	Seq object	with	a	DNA	alphabet	has	some	different	methods	than	one	with	
an	Amino	Acid	alphabet

>>>	from	Bio.Seq import	Seq
>>>	from	Bio.Alphabet import	IUPAC
>>>	my_seq =	Seq('AGTACACTGGT',	IUPAC.unambiguous_dna)
>>>	my_seq
Seq('AGTACACTGGT',	IUPAC.unambiguous_dna())
>>>	print(my_seq)
AGTACACTGGT

This	command	creates	the	Seq object

Seq objects	have	string	methods

• Seq objects	have	methods	that	work	just	like	
string	objects

• You	can	get	the	len()	of	a	Seq,	slice	it,	and	count()
specific	letters	in	it:

>>>	my_seq =	Seq('GATCGATGGGCCTATATAGGATCGAAAATCGC',	
IUPAC.unambiguous_dna)
>>>	len(my_seq)
32
>>>	print(my_seq[6:9])
TGG	
>>>	my_seq.count("G")
9

Turn	a	Seq object	into	a	string
• Sometimes	you	will	need	to	work	with	just	the	
sequence	string	in	a	Seq object	using	a	tool	that	is	not	
aware	of	the	Seq object	methods

• Turn	a	Seq object	into	a	string	with	str()

>>>	my_seq
Seq('GATCGATGGGCCTATATAGGATCGAAAATCGC',	
IUPACUnambiguousDNA())
>>>	seq_string=str(my_seq)
>>>	seq_string
'GATCGATGGGCCTATATAGGATCGAAAATCGC'

Seq Objects	have	special	methods
• DNA	Seq objects	can	.translate()	to	protein

• With	optional	translation	table and		to_stop=True parameters
>>>coding_dna=Seq("ATGGCCATTGTAATGGGCCGCTGAAAGGGTGCCCGATAG",	
IUPAC.unambiguous_dna)	
>>>	coding_dna.translate()	
Seq('MAIVMGR*KGAR*',	HasStopCodon(IUPACProtein(),	'*'))
>>>	print(coding_dna.translate(table=2,	to_stop=True))
MAIVMGRWKGAR

Seq objects	with	a	DNA	alphabet	have	the	reverse_complement()	method:

>>>	my_seq =	Seq('TTTAAAATGCGGG',	IUPAC.unambiguous_dna)
>>>	print(my_seq.reverse_complement())
CCCGCATTTTAAA

• The	Bio.SeqUtils module	has	some	useful	methods,	such	as	GC()	to	calculate	%	of	
G+C	bases	in	a	DNA	sequence.

>>>	from		Bio.SeqUtils import		GC
>>>	GC(my_seq)
46.875

Protein	Alphabet
• You	could	re-define	my_seq as	a	protein	by	changing	the	

alphabet,	which	will		totally	change	the	methods	that	will	
work	on	it.

• (‘G’,’A’,’T’,’C’	are	valid	protein	letters)

>>>	from	Bio.SeqUtils import	molecular_weight
>>>	my_seq
Seq('AGTACACTGGT',	IUPACUnambiguousDNA())
>>>	print(molecular_weight(my_seq))
3436.1957

>>>	my_seq.alphabet =	IUPAC.protein
>>>	my_seq
Seq('AGTACACTGGT',	IUPACProtein())
>>>	print(molecular_weight(my_seq))
912.0004

SeqRecord Object
• The	SeqRecord object	is	like	a	database	record	
(such	as	GenBank).	It	is	a	complex	object	that	
contains	a	Seq object,	and	also	annotation	fields,	
known	as	“attributes”.	

.seq

.id

.name

.description

.letter_annotations

.annotations

.features

.dbxrefs

• You	can	think	of	attributes	as	slots	with	names	
inside	the	SeqRecord object.	Each	one	may	
contain	data	(usually	a	string)	or	be	empty.

SeqRecord Example
>>>	from	Bio.Seq import	Seq
>>>	from	Bio.SeqRecord import	SeqRecord
>>>	test_seq =	Seq('GATC')
>>>	test_record =	SeqRecord(test_seq,	id='xyz')
>>>	test_record.description=	'This	is	only	a	test'
>>>	print(test_record)
ID:	xyz
Name:	<unknown	name>
Description:	This	is	only	a	test
Number	of	features:	0
Seq('GATC',	Alphabet())
>>>	print(test_record.seq)
GATC

• Specify	fields	in	the	SeqRecord object	with	a	. (dot)	
syntax

SeqIO and	FASTA	files
• SeqIO is	the	all	purpose	file	read/write	tool	for	SeqRecords

• SeqIO can	read	many	file	types:	http://biopython.org/wiki/SeqIO
• SeqIO has	.read()	and	.write()	methods	

• (do	not	need	to	“open”	file	first)
• It	can	read	a	text	file	in	FASTA	format
• In	Biopython,	fasta is	a	type	of	SeqRecord with	specific	fields

• Lets	assume	you	have	already	downloaded	a	FASTA	file	from	GenBank,	such	
as:	NC_005816.fna, and saved it as a text file in your current directory

>>>	from	Bio	import	SeqIO
>>>	gene	=	SeqIO.read("NC_005816.fna",	"fasta")
>>>	gene.id
'gi|45478711|ref|NC_005816.1|'
>>>	gene.seq
Seq('TGTAACGAACGGTGCAATAGTGATCCACACCCAACGCCTGAAATCAGATCCAGG...CTG'
,	SingleLetterAlphabet())
>>>	len(gene.seq)
9609

Multiple	FASTA	Records	in	one	file
• The	FASTA	format	can	store	many	sequences	in	
one	text	file

• SeqIO.parse()	reads	the	records	one	by	one
• This	code	creates	a	list	of	SeqRecord objects:

>>>	from Bio	import SeqIO
>>>	handle	=	open("example.fasta",	"rU")	

#	“handle”	is	a	pointer	to	the	file
>>>	seq_list =	list(SeqIO.parse(handle,	"fasta"))	
>>>	handle.close()
>>>	print(seq_list[0].seq) #shows	the	first	sequence	in	the	list

Database	as	a	FASTA	file
• Entire	databases	of	sequences	(DNA	or	protein)	can	
be	downloaded	as	a	single	FASTA	file	(e.g.	human	
proteins,	Drosophila coding	CDS,	Uniprot UniRef50)

FTP	directory	/pub/databases/uniprot/uniref/uniref50/	at	ftp.uniprot.org

07/22/2015 02:00PM 7,171 README

07/22/2015 02:00PM 4,422 uniref.xsd

07/22/2015 02:00PM 1,755 uniref50.dtd

07/22/2015 02:00PM 3,050,098,524 uniref50.fasta.gz
07/22/2015 02:00PM 310 uniref50.release_note

(not	necessarily	a	good	idea	to	keep	3	GB	of	data	on	your	computer)

Grab	sequence	from	FASTA	file

• If	you	have	a	large	local	FASTA	file,	and	a	list	of	
sequences	('my_gene_list.txt') that	you	want	to	grab:

>>>	from	Bio	import	SeqIO
>>>	output	=open('selected_seqs.fasta',	'w')
>>>	list	=open('my_gene_list.txt').read().splitlines()
>>>	for	test	in	SeqIO.parse('database.fasta','fasta'):

for	seqname in	list:
name	=	seqname.strip()
if	test.id	==	name:

SeqIO.write(test,	output,	'fasta')
>>>	output.close()

SeqIO for	FASTQ

• FASTQ	is	a	format	for	Next	Generation	DNA	
sequence	data	(FASTA	+	Quality)

• SeqIO can	read	(and	write)	FASTQ	format	files
from	Bio	import	SeqIO
count	=	0	
for	rec	in	SeqIO.parse("SRR020192.fastq",	"fastq"):	

count	+=	1	
print(count)	

Direct	Access	to	GenBank
• BioPython has	modules	that	can	directly	access	databases	over	

the	Internet
• The	Entrez module	uses	the	NCBI	Efetch service
• Efetch works	on	many	NCBI	databases	including	protein	and	

PubMed	literature	citations
• The	‘gb’	data	type	contains	much	more	annotation	information,	

but	rettype=‘fasta’	also	works
• With	a	few	tweaks,	this	code	could	be	used	to	download	a	list	of	

GenBank ID’s	and	save	them	as	FASTA	or	GenBank files:

>>>	from	Bio	import	Entrez
>>>Entrez.email =	"stu@nyu.edu"	

#	NCBI	requires	your	identity
>>>	handle	=	Entrez.efetch(db="nucleotide",	id="186972394",	

rettype="gb",	retmode="text")
>>>	record	=	SeqIO.read(handle,	“genbank")

>>>	print(record)
ID:	EU490707.1
Name:	EU490707
Description:	Selenipedium aequinoctiale maturase K	(matK)	gene,	partial	cds;	
chloroplast.
Number	of	features:	3
/sequence_version=1
/source=chloroplast	Selenipedium aequinoctiale
/taxonomy=['Eukaryota',	'Viridiplantae',	'Streptophyta',	'Embryophyta',	'Tracheophyta',	
'Spermatophyta',	'Magnoliophyta',	'Liliopsida',	'Asparagales',	'Orchidaceae',	
'Cypripedioideae',	'Selenipedium']
/keywords=['']
/references=[Reference(title='Phylogenetic	utility	of	ycf1	in	orchids:	a	plastid	gene	
more	variable	than	matK',	...),	Reference(title='Direct	Submission',	...)]
/accessions=['EU490707']
/data_file_division=PLN
/date=15-JAN-2009
/organism=Selenipedium aequinoctiale
/gi=186972394
Seq('ATTTTTTACGAACCTGTGGAAATTTTTGGTTATGACAATAAATCTAGTTTAGTA...GAA',	
IUPACAmbiguousDNA())

These	are	sub-fields	of	the	.annotations	field

BLAST
• BioPython has	several	methods	to	work	with	the	popular	
NCBI	BLAST	software

• NCBIWWW.qblast() sends	queries	directly	to	the	NCBI	
BLAST	server.	The	query	can	be	a	Seq object,	FASTA	file,	or	
a	GenBank ID.

>>>	from	Bio.Blast import	NCBIWWW	
>>>	query	=	SeqIO.read("test.fasta",	format="fasta")	
>>>	result_handle =	NCBIWWW.qblast("blastn",	"nt",	query.seq)	
>>>	blast_file =	open("my_blast.xml",	"w")	

#create	an	xml	output	file
>>>	blast_file.write(result_handle.read())	
>>>	blast_file.close() #	tidy	up
>>>	result_handle.close()

Parse	BLAST	Results
• It	is	often	useful	to	obtain	a	BLAST	result	directly	
(local	BLAST	server	or	via	Web	browser)	and	then	
parse	the	result	file	with	Python.

• Save	the	BLAST	result	in	XML	format	
– NCBIXML.read()	for	a	file	with	a	single	BLAST	result	(single	

query)
– NCBIXML.parse()	for	a	file	with	multiple	BLAST	results	(multiple	

queries)

>>>	from	Bio.Blast import	NCBIXML
>>>	handle	=	open("my_blast.xml")
>>>	blast_record =	NCBIXML.read(handle)	
>>>	for	hit	in	blast_record.descriptions:	

print	hit.title
print	hit.e

BLAST	Record	Object

>>>	from	Bio.Blast import	NCBIXML
>>>	handle	=	open("my_blast.xml")
>>>	blast_record =	NCBIXML.read(handle)	
>>>	for	hit	in	blast_record.alignments:	

for	hsp in	hit.hsps:
print	hit.title
print	hsp.expect
print	(hsp.query[0:75]	+	'...')
print(hsp.match[0:75]	+	'...')
print(hsp.sbjct[0:75]	+	'...')

gi|731383573|ref|XM_002284686.2| PREDICTED: Vitis vinifera cold-regulated 413
plasma membrane protein 2 (LOC100248690), mRNA
2.5739e-53
ATGCTAGTATGCTCGGTCATTACGGGTTTGGCACT-CATTTCCTCAAATGGCTCGCCTGCCTTGCGGCTATTTAC...
|||| | || ||| ||| | || ||||||||| |||||| | | ||| | || | |||| || ||||| ...
ATGCCATTAAGCTTGGTGGTCTGGGCTTTGGCACTACATTTCTTGAG-TGGTTGGCTTCTTTTGCTGCCATTTAT...

View	Aligned	Sequence

Many	Matches
• Often	a	BLAST	search	will	return	many	matches	
for	a	single	query	(save	as	an	XML	format	file)

• NCBIXML.parse()	can	return	these	as	BLAST	
record	objects	in	a	list,	or	deal	with	them	directly	
in	a	for loop.

from	Bio.Blast import	NCBIXML
E_VALUE_THRESH	=	1e-20
for	record	in	NCBIXML.parse(open("my_blast.xml")):

if	record.alignments : #skip	queries	with	no	matches
print	"QUERY:	%s"	%	record.query[:60]
for	align	in	record.alignments:

for	hsp in	align.hsps:
if	hsp.expect <	E_VALUE_THRESH:

print	"MATCH:	%s	"	%	align.title[:60]
print	hsp.expect

Illumina	Sequences
• Illumina	sequence	files	are	usually	stored	in	the	FASTQ	format.	

Similar	to	FASTA,	but	with	an	additional	pair	of	lines	for	the	
quality	annotation	of	each	base.	

@SRR350953.5	MENDEL_0047_FC62MN8AAXX:1:1:1646:938	length=152
NTCTTTTTCTTTCCTCTTTTGCCAACTTCAGCTAAATAGGAGCTACACTGATTAGGCAGAAACTTGATTAACAGGGCTTAAGGTA
ACCTTGTTGTAGGCCGTTTTGTAGCACTCAAAGCAATTGGTACCTCAACTGCAAAAGTCCTTGGCCC
+SRR350953.5	MENDEL_0047_FC62MN8AAXX:1:1:1646:938	length=152
+50000222C@@@@@22::::8888898989::::::<<<:<<<<<<:<<<<::<<:::::<<<<<:<:<<<IIIIIGFEEGGGGGGGII@IGDGBG
GGGGGDDIIGIIEGIGG>GGGGGGDGGGGGIIHIIBIIIGIIIHIIIIGII
@SRR350953.6	MENDEL_0047_FC62MN8AAXX:1:1:1686:935	length=152
NATTTTTACTAGTTTATTCTAGAACAGAGCATAAACTACTATTCAATAAACGTATGAAGCACTACTCACCTCCATTAACATGACGTT
TTTCCCTAATCTGATGGGTCATTATGACCAGAGTATTGCCGCGGTGGAAATGGAGGTGAGTAGTG
+SRR350953.6	MENDEL_0047_FC62MN8AAXX:1:1:1686:935	length=152
+83355@@@CC@C22@@C@@CC@@C@@@CC@@@@@@@@@@@@C?C22@@C@:::::@@@@@@C@@
@@@@@@CIGIHIIDGIGIIIIHHIIHGHHIIHHIFIIIIIHIIIIIIBIIIEIFGIIIFGFIBGDGGGGGGFIGDIFGADGAE
@SRR350953.7	MENDEL_0047_FC62MN8AAXX:1:1:1724:932	length=152
NTGTGATAGGCTTTGTCCATTCTGGAAACTCAATATTACTTGCGAGTCCTCAAAGGTAATTTTTGCTATTGCCAATATTCCTCAGA
GGAAAAAAGATACAATACTATGTTTTATCTAAATTAGCATTAGAAAAAAAATCTTTCATTAGGTGT
+SRR350953.7	MENDEL_0047_FC62MN8AAXX:1:1:1724:932	length=152
#.,')2/@@@@@@@@@@<:<<:778789979888889:::::99999<<::<:::::<<<<<@@@@@::::::IHIGIGGGGGGDGGDG
GDDDIHIHIIIII8GGGGGIIHHIIIGIIGIBIGIIIIEIHGGFIHHIIIIIIIGIIFIG

Get	a	file	by	FTP	in	Python
>>>	from	ftplib import	FTP
>>>	host="ftp.sra.ebi.ac.uk"
>>>	ftp=FTP(host)
>>>	ftp.login()
'230	Login	successful.‘
ftp.cwd('vol1/fastq/SRR020/SRR020192')
'250	Directory	successfully	changed.‘
>>>	ftp.retrlines('LIST')
-r--r--r-- 1	ftp						ftp 1777817	Jun	24	20:12	SRR020192.fastq.gz
'226	Directory	send	OK.'
>>>	ftp.retrbinary('RETR	SRR020192.fastq.gz',	 \
open('SRR020192.fastq.gz',	'wb').write)
'226	Transfer	complete.'
>>>	ftp.quit()
'221	Goodbye.'

Learning Objectives

• Biopython is	a	toolkit
• Seq objects	and	their	methods
• SeqRecord objects	have	data	fields
• SeqIO to	read	and	write	sequence	
objects
• Direct	access	to	GenBank with	
Entrez.efetch
• Working	with	BLAST	results

Learning Objectives

• Biopython is	a	toolkit
• Seq objects	and	their	methods
• SeqRecord objects	have	data	fields
• SeqIO to	read	and	write	sequence	
objects
• Direct	access	to	GenBank with	
Entrez.efetch
• Working	with	BLAST	results

